Contest Duration: - (local time) (100 minutes) Back to Home

Time Limit: 2 sec / Memory Limit: 256 MB

問題文

• AX 以上 Y 以下の整数からなる
• すべての 1\leq i \leq |A|-1 に対し、A_{i+1}A_i の倍数であり、かつ A_{i+1}A_i より真に大きい

制約

• 1 \leq X \leq Y \leq 10^{18}
• 入力は全て整数である

入力

X Y


入力例 1

3 20


出力例 1

3


入力例 2

25 100


出力例 2

3


入力例 3

314159265 358979323846264338


出力例 3

31


Score : 300 points

Problem Statement

As a token of his gratitude, Takahashi has decided to give his mother an integer sequence. The sequence A needs to satisfy the conditions below:

• A consists of integers between X and Y (inclusive).
• For each 1\leq i \leq |A|-1, A_{i+1} is a multiple of A_i and strictly greater than A_i.

Find the maximum possible length of the sequence.

Constraints

• 1 \leq X \leq Y \leq 10^{18}
• All input values are integers.

Input

Input is given from Standard Input in the following format:

X Y


Output

Print the maximum possible length of the sequence.

Sample Input 1

3 20


Sample Output 1

3


The sequence 3,6,18 satisfies the conditions.

Sample Input 2

25 100


Sample Output 2

3


Sample Input 3

314159265 358979323846264338


Sample Output 3

31