E - Second Sum /

実行時間制限: 2 sec / メモリ制限: 1024 MB

配点: 500

問題文

\{1, 2, \ldots, N\} の順列 P が与えられます。

ペア (L, R) (1 \le L \lt R \le N)について、P_L, P_{L+1}, \ldots, P_R の中で 2 番目に大きいものを X_{L, R} とします。

\displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} X_{L,R} を求めてください。

制約

  • 2 \le N \le 10^5
  • 1 \le P_i \le N
  • P_i \neq P_j (i \neq j)
  • 入力はすべて整数

入力

入力は以下の形式で標準入力から与えられる。

N
P_1 P_2 \ldots P_N

出力

\displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} X_{L,R} を出力せよ。


入力例 1

3
2 3 1

出力例 1

5

X_{1, 2} = 2, X_{1, 3} = 2, X_{2, 3} = 1 より、総和は 2 + 2 + 1 = 5 となります。


入力例 2

5
1 2 3 4 5

出力例 2

30

入力例 3

8
8 2 7 3 4 5 6 1

出力例 3

136

Score: 500 points

Problem Statement

Given is a permutation P of \{1, 2, \ldots, N\}.

For a pair (L, R) (1 \le L \lt R \le N), let X_{L, R} be the second largest value among P_L, P_{L+1}, \ldots, P_R.

Find \displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} X_{L,R}.

Constraints

  • 2 \le N \le 10^5
  • 1 \le P_i \le N
  • P_i \neq P_j (i \neq j)
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
P_1 P_2 \ldots P_N

Output

Print \displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} X_{L,R}.


Sample Input 1

3
2 3 1

Sample Output 1

5

X_{1, 2} = 2, X_{1, 3} = 2, and X_{2, 3} = 1, so the sum is 2 + 2 + 1 = 5.


Sample Input 2

5
1 2 3 4 5

Sample Output 2

30

Sample Input 3

8
8 2 7 3 4 5 6 1

Sample Output 3

136