Time Limit: 2 sec / Memory Limit: 1024 MB

Score : `100` points

### Problem Statement

There are `1`-, `5`-, `10`-, `50`-, `100`-, `500`- yen coins, and you have an infinite number of coins of each type.

For a given positive integer `x`, let `f(x)` be the smallest number of coins you have to use to pay exactly `x` yen.
For example, `f(2018)= 9` because `2018 = 1 + 1 + 1 + 5 + 10 + 500 + 500 + 500 + 500`.

You are given a positive integer `N`.
Count the number of positive integers `x` such that `f(x) = N`.

### Constraints

`1 \leq N \leq 10^{18}`

### Input

Input is given from Standard Input in the following format:

N

### Output

Print the number of positive integers `x` such that `f(x) = N`.

### Sample Input 1

1

### Sample Output 1

6

The value of `x` is `1, 5, 10, 50, 100,` or `500`.

### Sample Input 2

2

### Sample Output 2

19

The value of `x` is `2, 6, 11, 15, 20, 51, 55, 60, 101, 105, 110, 150, 200, 501, 505, 510, 550, 600,` or `1000`.

### Sample Input 3

1000000000000000000

### Sample Output 3

500