Submission #8241456


Source Code Expand

Copy
#include <bits/stdc++.h>
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
using namespace std;

inline constexpr int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
    assert (0 <= x and x < MOD);
    uint_fast64_t y = 1;
    for (; k; k >>= 1) {
        if (k & 1) (y *= x) %= MOD;
        (x *= x) %= MOD;
    }
    assert (0 <= y and y < MOD);
    return y;
}
inline constexpr int32_t modinv(int32_t value, int32_t MOD) {
    return modpow(value, MOD - 2, MOD);
}

template <int32_t MOD>
struct mint {
    int32_t value;
    mint() : value() {}
    mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
    mint(int32_t value_, std::nullptr_t) : value(value_) {}
    explicit operator bool() const { return value; }
    inline constexpr mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
    inline constexpr mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
    inline constexpr mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
    inline constexpr mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
    inline constexpr mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value <    0) this->value += MOD; return *this; }
    inline constexpr mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
    inline constexpr mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
    inline constexpr mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
    inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
    inline constexpr mint<MOD> operator /  (mint<MOD> other) const { return *this *  other.inv(); }
    inline constexpr mint<MOD> operator /= (mint<MOD> other)       { return *this *= other.inv(); }
    inline constexpr bool operator == (mint<MOD> other) const { return value == other.value; }
    inline constexpr bool operator != (mint<MOD> other) const { return value != other.value; }
};
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }

template <int32_t MOD>
mint<MOD> fact(int n) {
    static std::vector<mint<MOD> > memo(1, 1);
    while (n >= memo.size()) {
        memo.push_back(memo.back() * mint<MOD>(memo.size()));
    }
    return memo[n];
}
template <int32_t PRIME>
mint<PRIME> inv_fact(int n) {
    static std::vector<mint<PRIME> > memo;
    if (memo.size() <= n) {
        int l = memo.size();
        int r = n * 1.3 + 100;
        memo.resize(r);
        memo[r - 1] = fact<PRIME>(r - 1).inv();
        for (int i = r - 2; i >= l; -- i) {
            memo[i] = memo[i + 1] * (i + 1);
        }
    }
    return memo[n];
}

/**
 * @note O(n log n) at first time, otherwise O(1)
 */
template <int32_t MOD>
mint<MOD> choose(int n, int r) {
    assert (0 <= r and r <= n);
    return fact<MOD>(n) * inv_fact<MOD>(n - r) * inv_fact<MOD>(r);
}


constexpr int MOD = 1e9 + 7;
vector<mint<MOD> > solve(int B, int W) {
    vector<mint<MOD> > ans(B + W);
    mint<MOD> x = 0;
    mint<MOD> y = 0;
    REP (i, B + W) {
        x *= 2;
        y *= 2;
        if (B <= i) x += choose<MOD>(i, B);
        if (B <= i - 1) x -= choose<MOD>(i - 1, B);
        if (W <= i) y += choose<MOD>(i, W);
        if (W <= i - 1) y -= choose<MOD>(i - 1, W);
        mint<MOD> z = mint<MOD>(2).pow(i) - x - y;
        mint<MOD> num = 2 * y + z;
        mint<MOD> den = mint<MOD>(2).pow(i + 1);
        ans[i] = num / den;
    }
    return ans;
}

int main() {
    int b, w; cin >> b >> w;
    auto ans = solve(b, w);
    for (auto ans_i : ans) {
        cout << ans_i << endl;
    }
    return 0;
}

Submission Info

Submission Time
Task E - Black or White
User kimiyuki
Language C++14 (GCC 5.4.1)
Score 700
Code Size 4404 Byte
Status
Exec Time 372 ms
Memory 4468 KB

Judge Result

Set Name Score / Max Score Test Cases
Sample 0 / 0 sample_01.txt, sample_02.txt, sample_03.txt
All 700 / 700 sample_01.txt, sample_02.txt, sample_03.txt, test_01.txt, test_02.txt, test_03.txt, test_04.txt, test_05.txt, test_06.txt, test_07.txt, test_08.txt, test_09.txt, test_10.txt, test_11.txt, test_12.txt
Case Name Status Exec Time Memory
sample_01.txt 1 ms 256 KB
sample_02.txt 1 ms 256 KB
sample_03.txt 1 ms 256 KB
test_01.txt 372 ms 4468 KB
test_02.txt 201 ms 2884 KB
test_03.txt 356 ms 4212 KB
test_04.txt 201 ms 2728 KB
test_05.txt 295 ms 3664 KB
test_06.txt 185 ms 2552 KB
test_07.txt 186 ms 2552 KB
test_08.txt 246 ms 3232 KB
test_09.txt 249 ms 3224 KB
test_10.txt 181 ms 2340 KB
test_11.txt 183 ms 2344 KB
test_12.txt 113 ms 1804 KB