E - Black or White

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 700

問題文

今日のすぬけ君のおやつは B 個の黒いチョコレートと W 個の白いチョコレートです。

すぬけ君は以下の手続きをチョコレートがなくなるまで繰り返します。

  • 黒か白を等確率で選び、選んだ色のチョコレートが存在するなら 1 つ食べる。

1 以上 B+W 以下の各整数 i について、すぬけ君が i 番目に食べたチョコレートの色が黒である確率を求めてください。 これらの確率は有理数となることが示せます。これらを注記で述べるように modulo 10^{9}+7 で出力してください。

注記

有理数を出力する際は、まずその有理数を分数 \frac{y}{x} として表してください。ここで、x, y は整数であり、x10^9 + 7 で割り切れてはなりません (この問題の制約下で、そのような表現は必ず可能です)。そして、xz \equiv y \pmod{10^9 + 7} を満たすような 0 以上 10^9 + 6 以下の唯一の整数 z を出力してください。

制約

  • 入力は全て整数である。
  • 1 \leq B,W \leq 10^{5}

入力

入力は以下の形式で標準入力から与えられる。

B W

出力

答えを B+W 行に出力せよ。i 行目ではすぬけ君が i 番目に食べたチョコレートの色が黒である確率を注記で述べるように modulo 10^{9}+7 で出力せよ。


入力例 1

2 1

出力例 1

500000004
750000006
750000006
  • チョコレートを食べる順序としてありうるものは以下の 3 通りで、そのような食べ方が生じる確率はそれぞれ \frac{1}{2}, \frac{1}{4}, \frac{1}{4} です。
    • 白、黒、黒
    • 黒、白、黒
    • 黒、黒、白
  • よって、1 番目、2 番目、3 番目に食べたチョコレートが黒である確率はそれぞれ \frac{1}{2},\frac{3}{4},\frac{3}{4} です。

入力例 2

3 2

出力例 2

500000004
500000004
625000005
187500002
187500002
  • それぞれ \frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{11}{16},\frac{11}{16} です。

入力例 3

6 9

出力例 3

500000004
500000004
500000004
500000004
500000004
500000004
929687507
218750002
224609377
303710940
633300786
694091802
172485353
411682132
411682132

Score : 700 points

Problem Statement

Today, Snuke will eat B pieces of black chocolate and W pieces of white chocolate for an afternoon snack.

He will repeat the following procedure until there is no piece left:

  • Choose black or white with equal probability, and eat a piece of that color if it exists.

For each integer i from 1 to B+W (inclusive), find the probability that the color of the i-th piece to be eaten is black. It can be shown that these probabilities are rational, and we ask you to print them modulo 10^9 + 7, as described in Notes.

Notes

When you print a rational number, first write it as a fraction \frac{y}{x}, where x, y are integers and x is not divisible by 10^9 + 7 (under the constraints of the problem, such representation is always possible). Then, you need to print the only integer z between 0 and 10^9 + 6, inclusive, that satisfies xz \equiv y \pmod{10^9 + 7}.

Constraints

  • All values in input are integers.
  • 1 \leq B,W \leq 10^{5}

Input

Input is given from Standard Input in the following format:

B W

Output

Print the answers in B+W lines. In the i-th line, print the probability that the color of the i-th piece to be eaten is black, modulo 10^{9}+7.


Sample Input 1

2 1

Sample Output 1

500000004
750000006
750000006
  • There are three possible orders in which Snuke eats the pieces:
    • white, black, black
    • black, white, black
    • black, black, white
  • with probabilities \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, respectively. Thus, the probabilities of eating a black piece first, second and third are \frac{1}{2},\frac{3}{4} and \frac{3}{4}, respectively.

Sample Input 2

3 2

Sample Output 2

500000004
500000004
625000005
187500002
187500002
  • They are \frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{11}{16} and \frac{11}{16}, respectively.

Sample Input 3

6 9

Sample Output 3

500000004
500000004
500000004
500000004
500000004
500000004
929687507
218750002
224609377
303710940
633300786
694091802
172485353
411682132
411682132