N - Slimes 解説 /

実行時間制限: 2 sec / メモリ制限: 1024 MB

配点 : 100

問題文

N 匹のスライムが横一列に並んでいます。 最初、左から i 番目のスライムの大きさは a_i です。

太郎君は、すべてのスライムを合体させて 1 匹のスライムにしようとしています。 スライムが 1 匹になるまで、太郎君は次の操作を繰り返し行います。

  • 左右に隣り合う 2 匹のスライムを選び、それらを合体させて新しい 1 匹のスライムにする。 合体前の 2 匹のスライムの大きさを x および y とすると、合体後のスライムの大きさは x + y となる。 このとき、太郎君は x + y のコストを支払う。 なお、合体の前後でスライムたちの位置関係は変わらない。

太郎君が支払うコストの総和の最小値を求めてください。

制約

  • 入力はすべて整数である。
  • 2 \leq N \leq 400
  • 1 \leq a_i \leq 10^9

入力

入力は以下の形式で標準入力から与えられる。

N
a_1 a_2 \ldots a_N

出力

太郎君が支払うコストの総和の最小値を出力せよ。


入力例 1

4
10 20 30 40

出力例 1

190

次のように操作を行えばよいです。 操作対象のスライムを太字で表しています。

  • (10, 20, 30, 40) → (30, 30, 40)
  • (30, 30, 40) → (60, 40)
  • (60, 40) → (100)

入力例 2

5
10 10 10 10 10

出力例 2

120

例えば、次のように操作を行えばよいです。

  • (10, 10, 10, 10, 10) → (20, 10, 10, 10)
  • (20, 10, 10, 10) → (20, 20, 10)
  • (20, 20, 10) → (20, 30)
  • (20, 30) → (50)

入力例 3

3
1000000000 1000000000 1000000000

出力例 3

5000000000

答えは 32-bit 整数型に収まらない場合があります。


入力例 4

6
7 6 8 6 1 1

出力例 4

68

例えば、次のように操作を行えばよいです。

  • (7, 6, 8, 6, 1, 1) → (7, 6, 8, 6, 2)
  • (7, 6, 8, 6, 2) → (7, 6, 8, 8)
  • (7, 6, 8, 8) → (13, 8, 8)
  • (13, 8, 8) → (13, 16)
  • (13, 16) → (29)

Score : 100 points

Problem Statement

There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i.

Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime:

  • Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes.

Find the minimum possible total cost incurred.

Constraints

  • All values in input are integers.
  • 2 \leq N \leq 400
  • 1 \leq a_i \leq 10^9

Input

Input is given from Standard Input in the following format:

N
a_1 a_2 \ldots a_N

Output

Print the minimum possible total cost incurred.


Sample Input 1

4
10 20 30 40

Sample Output 1

190

Taro should do as follows (slimes being combined are shown in bold):

  • (10, 20, 30, 40) → (30, 30, 40)
  • (30, 30, 40) → (60, 40)
  • (60, 40) → (100)

Sample Input 2

5
10 10 10 10 10

Sample Output 2

120

Taro should do, for example, as follows:

  • (10, 10, 10, 10, 10) → (20, 10, 10, 10)
  • (20, 10, 10, 10) → (20, 20, 10)
  • (20, 20, 10) → (20, 30)
  • (20, 30) → (50)

Sample Input 3

3
1000000000 1000000000 1000000000

Sample Output 3

5000000000

The answer may not fit into a 32-bit integer type.


Sample Input 4

6
7 6 8 6 1 1

Sample Output 4

68

Taro should do, for example, as follows:

  • (7, 6, 8, 6, 1, 1) → (7, 6, 8, 6, 2)
  • (7, 6, 8, 6, 2) → (7, 6, 8, 8)
  • (7, 6, 8, 8) → (13, 8, 8)
  • (13, 8, 8) → (13, 16)
  • (13, 16) → (29)