Contest Duration: - (local time) (300 minutes)
K - Stones /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

N 個の正整数からなる集合 A = \{ a_1, a_2, \ldots, a_N \} があります。 太郎君と次郎君が次のゲームで勝負します。

• A の元 x をひとつ選び、山からちょうど x 個の石を取り去る。

### 制約

• 入力はすべて整数である。
• 1 \leq N \leq 100
• 1 \leq K \leq 10^5
• 1 \leq a_1 < a_2 < \cdots < a_N \leq K

### 入力

N K
a_1 a_2 \ldots a_N

2 4
2 3

First

2 5
2 3

### 出力例 2

Second

• 先手が 2 個の石を取り去った場合、後手が 3 個の石を取り去ると、先手は操作を行えない。
• 先手が 3 個の石を取り去った場合、後手が 2 個の石を取り去ると、先手は操作を行えない。

2 7
2 3

### 出力例 3

First

• 後手が 2 個の石を取り去った場合、先手が 3 個の石を取り去ると、後手は操作を行えない。
• 後手が 3 個の石を取り去った場合、先手が 2 個の石を取り去ると、後手は操作を行えない。

3 20
1 2 3

Second

3 21
1 2 3

First

1 100000
1

### 出力例 6

Second

Score : 100 points

### Problem Statement

There is a set A = \{ a_1, a_2, \ldots, a_N \} consisting of N positive integers. Taro and Jiro will play the following game against each other.

Initially, we have a pile consisting of K stones. The two players perform the following operation alternately, starting from Taro:

• Choose an element x in A, and remove exactly x stones from the pile.

A player loses when he becomes unable to play. Assuming that both players play optimally, determine the winner.

### Constraints

• All values in input are integers.
• 1 \leq N \leq 100
• 1 \leq K \leq 10^5
• 1 \leq a_1 < a_2 < \cdots < a_N \leq K

### Input

Input is given from Standard Input in the following format:

N K
a_1 a_2 \ldots a_N

### Output

If Taro will win, print First; if Jiro will win, print Second.

2 4
2 3

### Sample Output 1

First

If Taro removes three stones, Jiro cannot make a move. Thus, Taro wins.

2 5
2 3

### Sample Output 2

Second

Whatever Taro does in his operation, Jiro wins, as follows:

• If Taro removes two stones, Jiro can remove three stones to make Taro unable to make a move.
• If Taro removes three stones, Jiro can remove two stones to make Taro unable to make a move.

2 7
2 3

### Sample Output 3

First

Taro should remove two stones. Then, whatever Jiro does in his operation, Taro wins, as follows:

• If Jiro removes two stones, Taro can remove three stones to make Jiro unable to make a move.
• If Jiro removes three stones, Taro can remove two stones to make Jiro unable to make a move.

3 20
1 2 3

Second

3 21
1 2 3

First

1 100000
1

Second