E - Knapsack 2 /

### 問題文

N 個の品物があります。 品物には 1, 2, \ldots, N と番号が振られています。 各 i (1 \leq i \leq N) について、品物 i の重さは w_i で、価値は v_i です。

### 制約

• 入力はすべて整数である。
• 1 \leq N \leq 100
• 1 \leq W \leq 10^9
• 1 \leq w_i \leq W
• 1 \leq v_i \leq 10^3

N W
w_1 v_1
w_2 v_2
:
w_N v_N

3 8
3 30
4 50
5 60

90

1 1000000000
1000000000 10

10

6 15
6 5
5 6
6 4
6 6
3 5
7 2

### 出力例 3

17

Score : 100 points

### Problem Statement

There are N items, numbered 1, 2, \ldots, N. For each i (1 \leq i \leq N), Item i has a weight of w_i and a value of v_i.

Taro has decided to choose some of the N items and carry them home in a knapsack. The capacity of the knapsack is W, which means that the sum of the weights of items taken must be at most W.

Find the maximum possible sum of the values of items that Taro takes home.

### Constraints

• All values in input are integers.
• 1 \leq N \leq 100
• 1 \leq W \leq 10^9
• 1 \leq w_i \leq W
• 1 \leq v_i \leq 10^3

### Input

Input is given from Standard Input in the following format:

N W
w_1 v_1
w_2 v_2
:
w_N v_N

### Output

Print the maximum possible sum of the values of items that Taro takes home.

3 8
3 30
4 50
5 60

### Sample Output 1

90

Items 1 and 3 should be taken. Then, the sum of the weights is 3 + 5 = 8, and the sum of the values is 30 + 60 = 90.

1 1000000000
1000000000 10

10

6 15
6 5
5 6
6 4
6 6
3 5
7 2

### Sample Output 3

17

Items 2, 4 and 5 should be taken. Then, the sum of the weights is 5 + 6 + 3 = 14, and the sum of the values is 6 + 6 + 5 = 17.