A - AABCDDEFE /

### 問題文

• S_10 ではない
• S_1 = S_2
• S_5 = S_6
• S_7 = S_9

### 制約

• N は正の整数
• 美しい整数が N 個以上存在する

### 入力

N


### 入力例 1

3


### 出力例 1

110000020


### 入力例 2

882436


### 出力例 2

998244353


### 入力例 3

2023


### 出力例 3

110200222


Score : 300 points

### Problem Statement

A positive integer x is said to be a beautiful integer if and only if x is a 9-digit integer whose decimal notation S_1\ldots S_9 (S_i is the i-th character) satisfies all of the following conditions:

• S_1 is not 0,
• S_1 = S_2,
• S_5 = S_6, and
• S_7 = S_9.

For instance, 998244353 and 333333333 are beautiful integers, while 111112222 is not, since S_5 \neq S_6.

You are given a positive integer N. Print the N-th smallest beautiful integer.

### Constraints

• N is a positive integer.
• There are at least N beautiful integers.

### Input

The input is given from Standard Input in the following format:

N


### Output

Print the N-th smallest beautiful integer.

### Sample Input 1

3


### Sample Output 1

110000020


The beautiful integers in ascending order are 110000000, 110000010, 110000020, \ldots.

### Sample Input 2

882436


### Sample Output 2

998244353


### Sample Input 3

2023


### Sample Output 3

110200222