E - Increasing Minimum /

### 問題文

N 項からなる正整数列 A = (A_1, A_2, \ldots, A_N) に対して、次の操作を行い、数列 I = (i_1, i_2, \ldots, i_K) を得ることを考えます。

• k = 1, 2, \ldots, K の順に、次を行う。
• A_i = \min\{A_1, A_2, \ldots, A_N\} となる i をひとつ選ぶ。
• i_k = i と定める。
• A_i1 を加える。

### 制約

• 1\leq N, K\leq 3\times 10^5
• 1\leq i_k\leq N

### 入力

N K
i_1 i_2 \ldots i_K


### 入力例 1

4 6
1 1 4 4 2 1


### 出力例 1

1 3 3 2


### 入力例 2

4 6
2 2 2 2 2 2


### 出力例 2

6 1 6 6


### 入力例 3

4 6
1 1 2 2 3 3


### 出力例 3

-1


Score : 800 points

### Problem Statement

Consider doing the operation below on a sequence of N positive integers A = (A_1, A_2, \ldots, A_N) to obtain a sequence I = (i_1, i_2, \ldots, i_K).

• For each k = 1, 2, \ldots, K in this order, do the following.
• Choose an i such that A_i = \min\{A_1, A_2, \ldots, A_N\}.
• Let i_k = i.

You are given integers N, K, and a sequence I.

Determine whether there exists a sequence of positive integers A for which it is possible to obtain I from the operation. If it exists, find the lexicographically smallest such sequence.

### Constraints

• 1\leq N, K\leq 3\times 10^5
• 1\leq i_k\leq N

### Input

Input is given from Standard Input in the following format:

N K
i_1 i_2 \ldots i_K


### Output

If there is no sequence of positive integers A for which it is possible to obtain I from the operation, print -1. If it exists, print the lexicographically smallest among such sequences A, in one line, with spaces in between.

### Sample Input 1

4 6
1 1 4 4 2 1


### Sample Output 1

1 3 3 2


Some of the sequences for which it is possible to obtain I = (1,1,4,4,2,1) from the operation are (1, 3, 3, 2) and (2, 4, 5, 3). The lexicographically smallest among them is (1, 3, 3, 2).

### Sample Input 2

4 6
2 2 2 2 2 2


### Sample Output 2

6 1 6 6


### Sample Input 3

4 6
1 1 2 2 3 3


### Sample Output 3

-1