F - Distance Sums /

### 問題文

• 各頂点には 1,2,..., N の番号が付けられている
• 各辺には 1,2,..., N-1 の番号が付けられていて、i 番目の辺は頂点 u_iv_i をつないでいる
• 各頂点 i に対して、i から他の頂点までの距離の和は D_i である。ただし、各辺の長さは 1 であるものとする。

### 制約

• 2 \leq N \leq 100000
• 1 \leq D_i \leq 10^{12}
• D_i はすべて異なる

### 入力

N
D_1
D_2
:
D_N


### 入力例 1

7
10
15
13
18
11
14
19


### 出力例 1

1 2
1 3
1 5
3 4
5 6
6 7


### 入力例 2

2
1
2


### 出力例 2

-1


### 入力例 3

15
57
62
47
45
42
74
90
75
54
50
66
63
77
87
51


### 出力例 3

1 10
1 11
2 8
2 15
3 5
3 9
4 5
4 10
5 15
6 12
6 14
7 13
9 12
11 13


Score : 900 points

### Problem Statement

You are given a sequence D_1, D_2, ..., D_N of length N. The values of D_i are all distinct. Does a tree with N vertices that satisfies the following conditions exist?

• The vertices are numbered 1,2,..., N.
• The edges are numbered 1,2,..., N-1, and Edge i connects Vertex u_i and v_i.
• For each vertex i, the sum of the distances from i to the other vertices is D_i, assuming that the length of each edge is 1.

If such a tree exists, construct one such tree.

### Constraints

• 2 \leq N \leq 100000
• 1 \leq D_i \leq 10^{12}
• D_i are all distinct.

### Input

Input is given from Standard Input in the following format:

N
D_1
D_2
:
D_N


### Output

If a tree with n vertices that satisfies the conditions does not exist, print -1.

If a tree with n vertices that satisfies the conditions exist, print n-1 lines. The i-th line should contain u_i and v_i with a space in between. If there are multiple trees that satisfy the conditions, any such tree will be accepted.

### Sample Input 1

7
10
15
13
18
11
14
19


### Sample Output 1

1 2
1 3
1 5
3 4
5 6
6 7


The tree shown below satisfies the conditions.

### Sample Input 2

2
1
2


### Sample Output 2

-1


### Sample Input 3

15
57
62
47
45
42
74
90
75
54
50
66
63
77
87
51


### Sample Output 3

1 10
1 11
2 8
2 15
3 5
3 9
4 5
4 10
5 15
6 12
6 14
7 13
9 12
11 13