D - すぬけ君の塗り絵 解説 /

実行時間制限: 3 sec / メモリ制限: 256 MB

配点 : 400

問題文

H 行、横 W 列のマス目からなる盤があります。最初、どのマス目も白く塗られています。

すぬけ君が、このうち N マスを黒く塗りつぶしました。i 回目 ( 1 \leq i \leq N ) に塗りつぶしたのは、 上から a_i 行目で左から b_i 列目のマスでした。

すぬけ君がマス目を塗りつぶした後の盤の状態について、以下のものの個数を計算してください。

  • 各整数 j ( 0 \leq j \leq 9 ) について、盤の中に完全に含まれるすべての 33 列の連続するマス目のうち、黒いマスがちょうど j 個あるもの。

制約

  • 3 \leq H \leq 10^9
  • 3 \leq W \leq 10^9
  • 0 \leq N \leq min(10^5,H×W)
  • 1 \leq a_i \leq H (1 \leq i \leq N)
  • 1 \leq b_i \leq W (1 \leq i \leq N)
  • (a_i, b_i) \neq (a_j, b_j) (i \neq j)

入力

入力は以下の形式で標準入力から与えられる。

H W N
a_1 b_1
:
a_N b_N

出力

出力は 10 行からなる。 j+1 行目 ( 0 \leq j \leq 9 ) には、盤の中に完全に含まれるすべての 33 列の連続するマス目のうち、黒いマスがちょうど j 個あるものの 総数を出力せよ。


入力例 1

4 5 8
1 1
1 4
1 5
2 3
3 1
3 2
3 4
4 4

出力例 1

0
0
0
2
4
0
0
0
0
0

この盤に含まれる 3×3 の正方形は全部で 6 個ありますが、これらのうち 2 個の内部には黒いマスが 3 個、残りの 4 個の内部には黒いマスが 4 個含まれています。


入力例 2

10 10 20
1 1
1 4
1 9
2 5
3 10
4 2
4 7
5 9
6 4
6 6
6 7
7 1
7 3
7 7
8 1
8 5
8 10
9 2
10 4
10 9

出力例 2

4
26
22
10
2
0
0
0
0
0

入力例 3

1000000000 1000000000 0

出力例 3

999999996000000004
0
0
0
0
0
0
0
0
0

Score : 400 points

Problem Statement

We have a grid with H rows and W columns. At first, all cells were painted white.

Snuke painted N of these cells. The i-th ( 1 \leq i \leq N ) cell he painted is the cell at the a_i-th row and b_i-th column.

Compute the following:

  • For each integer j ( 0 \leq j \leq 9 ), how many subrectangles of size 3×3 of the grid contains exactly j black cells, after Snuke painted N cells?

Constraints

  • 3 \leq H \leq 10^9
  • 3 \leq W \leq 10^9
  • 0 \leq N \leq min(10^5,H×W)
  • 1 \leq a_i \leq H (1 \leq i \leq N)
  • 1 \leq b_i \leq W (1 \leq i \leq N)
  • (a_i, b_i) \neq (a_j, b_j) (i \neq j)

Input

The input is given from Standard Input in the following format:

H W N
a_1 b_1
:
a_N b_N

Output

Print 10 lines. The (j+1)-th ( 0 \leq j \leq 9 ) line should contain the number of the subrectangles of size 3×3 of the grid that contains exactly j black cells.


Sample Input 1

4 5 8
1 1
1 4
1 5
2 3
3 1
3 2
3 4
4 4

Sample Output 1

0
0
0
2
4
0
0
0
0
0

There are six subrectangles of size 3×3. Two of them contain three black cells each, and the remaining four contain four black cells each.


Sample Input 2

10 10 20
1 1
1 4
1 9
2 5
3 10
4 2
4 7
5 9
6 4
6 6
6 7
7 1
7 3
7 7
8 1
8 5
8 10
9 2
10 4
10 9

Sample Output 2

4
26
22
10
2
0
0
0
0
0

Sample Input 3

1000000000 1000000000 0

Sample Output 3

999999996000000004
0
0
0
0
0
0
0
0
0