Submission #15794827


Source Code Expand

#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <complex>

template <int MOD>
struct ModInt {
    using lint = long long;
    int val;

    // constructor
    ModInt(lint v = 0) : val(v % MOD) {
        if (val < 0) val += MOD;
    };

    // unary operator
    ModInt operator+() const { return ModInt(val); }
    ModInt operator-() const { return ModInt(MOD - val); }
    ModInt inv() const { return this->pow(MOD - 2); }

    // arithmetic
    ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }
    ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }
    ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }
    ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }
    ModInt pow(lint n) const {
        auto x = ModInt(1);
        auto b = *this;
        while (n > 0) {
            if (n & 1) x *= b;
            n >>= 1;
            b *= b;
        }
        return x;
    }

    // compound assignment
    ModInt& operator+=(const ModInt& x) {
        if ((val += x.val) >= MOD) val -= MOD;
        return *this;
    }
    ModInt& operator-=(const ModInt& x) {
        if ((val -= x.val) < 0) val += MOD;
        return *this;
    }
    ModInt& operator*=(const ModInt& x) {
        val = lint(val) * x.val % MOD;
        return *this;
    }
    ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); }

    // compare
    bool operator==(const ModInt& b) const { return val == b.val; }
    bool operator!=(const ModInt& b) const { return val != b.val; }
    bool operator<(const ModInt& b) const { return val < b.val; }
    bool operator<=(const ModInt& b) const { return val <= b.val; }
    bool operator>(const ModInt& b) const { return val > b.val; }
    bool operator>=(const ModInt& b) const { return val >= b.val; }

    // I/O
    friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept {
        lint v;
        is >> v;
        x = v;
        return is;
    }
    friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; }
};

template <int K>
struct FastFourierTransform {
    using cplx = std::complex<double>;
    using cplxs = std::vector<cplx>;

    static constexpr double PI = 3.14159265358979323846L;

    cplxs zetas;

    explicit FastFourierTransform() : zetas(K) {
        for (int i = 0; i < K; ++i) {
            zetas[i] = std::polar(1., PI * 2 / (1 << i));
        }
    }

    void bitrev(cplxs& f) const {
        int n = f.size();

        for (int i = 0; i < n; ++i) {
            int ti = i, ni = 0;
            for (int k = 0; (1 << k) < n; ++k) {
                int b = (ti & 1);
                ti >>= 1;
                ni <<= 1;
                ni += b;
            }

            if (i < ni) {
                std::swap(f[i], f[ni]);
            }
        }
    }

    void udft(cplxs& f, bool isinv) const {
        if (f.size() <= 1) return;

        int l = 1;
        int k = 1 << l;
        int n = f.size();

        while (k <= n) {
            auto zeta = zetas[l];
            if (isinv) zeta = std::conj(zeta);

            for (int r = 0; r < n / k; ++r) {
                cplx zetapow = 1;

                for (int j = 0; j < k / 2; ++j) {
                    int b = r * k + j;
                    auto t = zetapow * f[b + k / 2];

                    f[b + k / 2] = f[b] - t;
                    f[b] = f[b] + t;

                    zetapow *= zeta;
                }
            }

            ++l;
            k <<= 1;
        }
    }

    void dft(cplxs& f, bool isinv) const {
        bitrev(f);
        udft(f, isinv);
    }

    // main routine
    using lint = long long;
    using lints = std::vector<lint>;

    lints fft(const lints& ff, const lints& gf) const {
        auto f = li2cp(ff),
             g = li2cp(gf);

        int fdeg = f.size(),
            gdeg = g.size();

        int k = 0;
        while ((1 << k) < fdeg + gdeg) ++k;

        int n = (1 << k);
        f.resize(n, 0);
        g.resize(n, 0);

        dft(f, false);
        dft(g, false);

        cplxs h(n);
        for (int i = 0; i < n; ++i) h[i] = f[i] * g[i];

        dft(h, true);
        h.resize(fdeg + gdeg - 1);
        for (auto& x : h) x /= n;

        return cp2li(h);
    }

    // lint <-> complex converter
    cplxs li2cp(const lints& f) const {
        cplxs ret;
        std::transform(f.begin(), f.end(), std::back_inserter(ret),
                       [](auto x) { return cplx(x); });
        return ret;
    }

    lints cp2li(const cplxs& f) const {
        lints ret;
        std::transform(f.begin(), f.end(), std::back_inserter(ret),
                       [](auto x) { return std::llround(x.real()); });
        return ret;
    }
};

constexpr int MOD = 200003;
using mint = ModInt<MOD>;
const FastFourierTransform<20> FFT;

using lint = long long;

void solve() {
    // g^log[x] = x
    std::vector<int> log(MOD);
    mint g = 2;
    for (int i = 0; i < MOD - 1; ++i) {
        log[g.pow(i).val] = i;
    }

    std::vector<lint> cnt(MOD - 1, 0);

    int n;
    std::cin >> n;
    while (n--) {
        int a;
        std::cin >> a;
        if (a != 0) ++cnt[log[a]];
    }

    // FFTで畳み込む
    auto res = FFT.fft(cnt, cnt);

    lint ans = 0;
    for (int i = 0; i < (int)res.size(); ++i) {
        lint num = llround(res[i]);
        ans += g.pow(i).val * num;
    }

    // a_i * a_iを省く
    for (int i = 0; i < (int)cnt.size(); ++i) {
        lint num = llround(cnt[i]);
        ans -= g.pow(i * 2).val * num;
    }

    // i > jを省く
    ans /= 2;

    std::cout << ans << "\n";
}

int main() {
    std::cin.tie(nullptr);
    std::ios::sync_with_stdio(false);

    solve();

    return 0;
}

Submission Info

Submission Time
Task C - Product Modulo
User Tiramister
Language C++ (GCC 9.2.1)
Score 800
Code Size 5768 Byte
Status AC
Exec Time 233 ms
Memory 37632 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 800 / 800
Status
AC × 2
AC × 15
Set Name Test Cases
Sample s1.txt, s2.txt
All 001.txt, 002.txt, 003.txt, 004.txt, 005.txt, 006.txt, 007.txt, 008.txt, 009.txt, 010.txt, 011.txt, 012.txt, 013.txt, s1.txt, s2.txt
Case Name Status Exec Time Memory
001.txt AC 222 ms 37632 KiB
002.txt AC 225 ms 37500 KiB
003.txt AC 218 ms 37632 KiB
004.txt AC 225 ms 37540 KiB
005.txt AC 232 ms 37492 KiB
006.txt AC 231 ms 37540 KiB
007.txt AC 230 ms 37496 KiB
008.txt AC 228 ms 37556 KiB
009.txt AC 231 ms 37536 KiB
010.txt AC 233 ms 37552 KiB
011.txt AC 228 ms 37544 KiB
012.txt AC 229 ms 37540 KiB
013.txt AC 214 ms 37520 KiB
s1.txt AC 216 ms 37416 KiB
s2.txt AC 223 ms 37524 KiB