F - Two Permutations /

実行時間制限: 8 sec / メモリ制限: 1024 MB

配点 : 1600

問題文

すぬけくんは、(0,1,\cdots,N-1) の順列 (P_0,P_1,\cdots,P_{N-1})(Q_0,Q_1,\cdots,Q_{N-1}) を持っています。

すぬけくんはこれから、(0,1,\cdots,N-1) の順列 A および B を、以下の条件を満たすように作ります。

  • それぞれの i (0 \leq i \leq N-1) について、A_ii または P_i である。
  • それぞれの i (0 \leq i \leq N-1) について、B_ii または Q_i である。

順列 AB の距離を、A_i \neq B_i となる i の個数と定義します。 AB の距離の最大値を求めてください。

制約

  • 1 \leq N \leq 100000
  • 0 \leq P_i \leq N-1
  • P_0,P_1,\cdots,P_{N-1} はすべて異なる。
  • 0 \leq Q_i \leq N-1
  • Q_0,Q_1,\cdots,Q_{N-1} はすべて異なる。
  • 入力される値はすべて整数である。

入力

入力は以下の形式で標準入力から与えられる。

N
P_0 P_1 \cdots P_{N-1}
Q_0 Q_1 \cdots Q_{N-1}

出力

順列 AB の距離の最大値を出力せよ。


入力例 1

4
2 1 3 0
0 2 3 1

出力例 1

3

例えば、A=(0,1,2,3),\ B=(0,2,3,1) とすると距離が 3 になり、これが最大です。


入力例 2

10
0 4 5 3 7 8 2 1 9 6
3 8 5 6 4 0 2 1 7 9

出力例 2

8

入力例 3

32
22 31 30 29 7 17 16 3 14 9 19 11 2 5 10 1 25 18 15 24 20 0 12 21 27 4 26 28 8 6 23 13
22 3 2 7 17 9 16 4 14 8 19 26 28 5 10 1 25 18 15 13 11 0 12 23 21 20 29 24 27 6 30 31

出力例 3

28

Score : 1600 points

Problem Statement

Snuke has permutations (P_0,P_1,\cdots,P_{N-1}) and (Q_0,Q_1,\cdots,Q_{N-1}) of (0,1,\cdots,N-1).

Now, he will make new permutations A and B of (0,1,\cdots,N-1), under the following conditions:

  • For each i (0 \leq i \leq N-1), A_i should be i or P_i.
  • For each i (0 \leq i \leq N-1), B_i should be i or Q_i.

Let us define the distance of permutations A and B as the number of indices i such that A_i \neq B_i. Find the maximum possible distance of A and B.

Constraints

  • 1 \leq N \leq 100000
  • 0 \leq P_i \leq N-1
  • P_0,P_1,\cdots,P_{N-1} are all different.
  • 0 \leq Q_i \leq N-1
  • Q_0,Q_1,\cdots,Q_{N-1} are all different.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
P_0 P_1 \cdots P_{N-1}
Q_0 Q_1 \cdots Q_{N-1}

Output

Print the maximum possible distance of A and B.


Sample Input 1

4
2 1 3 0
0 2 3 1

Sample Output 1

3

For example, if we make A=(0,1,2,3) and B=(0,2,3,1), the distance will be 3, which is the maximum result possible.


Sample Input 2

10
0 4 5 3 7 8 2 1 9 6
3 8 5 6 4 0 2 1 7 9

Sample Output 2

8

Sample Input 3

32
22 31 30 29 7 17 16 3 14 9 19 11 2 5 10 1 25 18 15 24 20 0 12 21 27 4 26 28 8 6 23 13
22 3 2 7 17 9 16 4 14 8 19 26 28 5 10 1 25 18 15 13 11 0 12 23 21 20 29 24 27 6 30 31

Sample Output 3

28