E - Modulo Pairing

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 1200

問題文

M を正整数とします。

2 N 個の整数 a_1, a_2, \ldots, a_{2 N} が与えられます。 ここで、各 i について 0 \leq a_i < M です。

2 N 個の整数を N 組のペアに分けることを考えます。 このとき、各整数はちょうど 1 つのペアに属さなければなりません。

ペア (x, y)醜さ(x + y) \mod M と定義します。 N 組のペアの醜さの最大値を Z としたとき、Z の最小値を求めてください。

制約

  • 入力はすべて整数である。
  • 1 \leq N \leq 10^5
  • 1 \leq M \leq 10^9
  • 0 \leq a_i < M

入力

入力は以下の形式で標準入力から与えられる。

N M
a_1 a_2 \cdots a_{2N}

出力

N 組のペアの醜さの最大値を Z としたとき、Z の最小値を出力せよ。


入力例 1

3 10
0 2 3 4 5 9

出力例 1

5

例えば、(0, 5), (2, 3), (4, 9) とペアを作ればよいです。 このとき、ペアの醜さはそれぞれ 5, 5, 3 となります。


入力例 2

2 10
1 9 1 9

出力例 2

0

(1, 9), (1, 9) とペアを作ればよいです。 このとき、ペアの醜さはともに 0 です。

Score : 1200 points

Problem Statement

Let M be a positive integer.

You are given 2 N integers a_1, a_2, \ldots, a_{2 N}, where 0 \leq a_i < M for each i.

Consider dividing the 2 N integers into N pairs. Here, each integer must belong to exactly one pair.

We define the ugliness of a pair (x, y) as (x + y) \mod M. Let Z be the largest ugliness of the N pairs. Find the minimum possible value of Z.

Constraints

  • All values in input are integers.
  • 1 \leq N \leq 10^5
  • 1 \leq M \leq 10^9
  • 0 \leq a_i < M

Input

Input is given from Standard Input in the following format:

N M
a_1 a_2 \cdots a_{2N}

Output

Print the minimum possible value of Z, where Z is the largest ugliness of the N pairs.


Sample Input 1

3 10
0 2 3 4 5 9

Sample Output 1

5

One solution is to form pairs (0, 5), (2, 3) and (4, 9), with ugliness 5, 5 and 3, respectively.


Sample Input 2

2 10
1 9 1 9

Sample Output 2

0

Pairs (1, 9) and (1, 9) should be formed, with ugliness both 0.