D - Rotation Sort

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 1000

問題文

\{ 1, \ldots, N \} の順列 p = (p_1, \ldots, p_N) が与えられます。 あなたは、次の 2 種類の操作を好きな順序で繰り返し行うことができます。

  • コスト A を支払う。 整数 lr (1 \leq l < r \leq N) を自由に選び、(p_l, \ldots, p_r) を左にひとつシフトする。 すなわち、p_l, p_{l + 1}, \ldots, p_{r - 1}, p_r をそれぞれ p_{l + 1}, p_{l + 2}, \ldots, p_r, p_l へ置き換える。
  • コスト B を支払う。 整数 lr (1 \leq l < r \leq N) を自由に選び、(p_l, \ldots, p_r) を右にひとつシフトする。 すなわち、p_l, p_{l + 1}, \ldots, p_{r - 1}, p_r をそれぞれ p_r, p_l, \ldots, p_{r - 2}, p_{r - 1} へ置き換える。

p を昇順にソートするために必要な総コストの最小値を求めてください。

制約

  • 入力はすべて整数である。
  • 1 \leq N \leq 5000
  • 1 \leq A, B \leq 10^9
  • (p_1 \ldots, p_N)\{ 1, \ldots, N \} の順列である。

入力

入力は以下の形式で標準入力から与えられる。

N A B
p_1 \cdots p_N

出力

p を昇順にソートするために必要な総コストの最小値を出力せよ。


入力例 1

3 20 30
3 1 2

出力例 1

20

(p_1, p_2, p_3) を左にひとつシフトすると、p = (1, 2, 3) となります。


入力例 2

4 20 30
4 2 3 1

出力例 2

50

例えば、次のように操作を行えばよいです。

  • (p_1, p_2, p_3, p_4) を左にひとつシフトする。 すると、p = (2, 3, 1, 4) となる。
  • (p_1, p_2, p_3) を右にひとつシフトする。 すると、p = (1, 2, 3, 4) となる。

このとき、総コストは 20 + 30 = 50 です。


入力例 3

1 10 10
1

出力例 3

0

入力例 4

4 1000000000 1000000000
4 3 2 1

出力例 4

3000000000

入力例 5

9 40 50
5 3 4 7 6 1 2 9 8

出力例 5

220

Score : 1000 points

Problem Statement

You are given a permutation p = (p_1, \ldots, p_N) of \{ 1, \ldots, N \}. You can perform the following two kinds of operations repeatedly in any order:

  • Pay a cost A. Choose integers l and r (1 \leq l < r \leq N), and shift (p_l, \ldots, p_r) to the left by one. That is, replace p_l, p_{l + 1}, \ldots, p_{r - 1}, p_r with p_{l + 1}, p_{l + 2}, \ldots, p_r, p_l, respectively.
  • Pay a cost B. Choose integers l and r (1 \leq l < r \leq N), and shift (p_l, \ldots, p_r) to the right by one. That is, replace p_l, p_{l + 1}, \ldots, p_{r - 1}, p_r with p_r, p_l, \ldots, p_{r - 2}, p_{r - 1}, respectively.

Find the minimum total cost required to sort p in ascending order.

Constraints

  • All values in input are integers.
  • 1 \leq N \leq 5000
  • 1 \leq A, B \leq 10^9
  • (p_1 \ldots, p_N) is a permutation of \{ 1, \ldots, N \}.

Input

Input is given from Standard Input in the following format:

N A B
p_1 \cdots p_N

Output

Print the minimum total cost required to sort p in ascending order.


Sample Input 1

3 20 30
3 1 2

Sample Output 1

20

Shifting (p_1, p_2, p_3) to the left by one results in p = (1, 2, 3).


Sample Input 2

4 20 30
4 2 3 1

Sample Output 2

50

One possible sequence of operations is as follows:

  • Shift (p_1, p_2, p_3, p_4) to the left by one. Now we have p = (2, 3, 1, 4).
  • Shift (p_1, p_2, p_3) to the right by one. Now we have p = (1, 2, 3, 4).

Here, the total cost is 20 + 30 = 50.


Sample Input 3

1 10 10
1

Sample Output 3

0

Sample Input 4

4 1000000000 1000000000
4 3 2 1

Sample Output 4

3000000000

Sample Input 5

9 40 50
5 3 4 7 6 1 2 9 8

Sample Output 5

220