提出 #18766914
ソースコード 拡げる
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
#include <algorithm>
#include <utility>
#include <vector>
namespace atcoder {
namespace internal {
template <class E> struct csr {
std::vector<int> start;
std::vector<E> elist;
csr(int n, const std::vector<std::pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
} // namespace internal
} // namespace atcoder
#include <vector>
namespace atcoder {
namespace internal {
template <class T> struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
} // namespace atcoder
namespace atcoder {
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
assert(0 <= cost);
int m = int(_edges.size());
_edges.push_back({from, to, cap, 0, cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(_edges.size());
assert(0 <= i && i < m);
return _edges[i];
}
std::vector<edge> edges() { return _edges; }
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
int m = int(_edges.size());
std::vector<int> edge_idx(m);
auto g = [&]() {
std::vector<int> degree(_n), redge_idx(m);
std::vector<std::pair<int, _edge>> elist;
elist.reserve(2 * m);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] = degree[e.from]++;
redge_idx[i] = degree[e.to]++;
elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
}
auto _g = internal::csr<_edge>(_n, elist);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] += _g.start[e.from];
redge_idx[i] += _g.start[e.to];
_g.elist[edge_idx[i]].rev = redge_idx[i];
_g.elist[redge_idx[i]].rev = edge_idx[i];
}
return _g;
}();
auto result = slope(g, s, t, flow_limit);
for (int i = 0; i < m; i++) {
auto e = g.elist[edge_idx[i]];
_edges[i].flow = _edges[i].cap - e.cap;
}
return result;
}
private:
int _n;
std::vector<edge> _edges;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
int s,
int t,
Cap flow_limit) {
std::vector<std::pair<Cost, Cost>> dual_dist(_n);
std::vector<int> prev_e(_n);
std::vector<bool> vis(_n);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::vector<int> que_min;
std::vector<Q> que;
auto dual_ref = [&]() {
for (int i = 0; i < _n; i++) {
dual_dist[i].second = std::numeric_limits<Cost>::max();
}
std::fill(vis.begin(), vis.end(), false);
que_min.clear();
que.clear();
size_t heap_r = 0;
dual_dist[s].second = 0;
que_min.push_back(s);
while (!que_min.empty() || !que.empty()) {
int v;
if (!que_min.empty()) {
v = que_min.back();
que_min.pop_back();
} else {
while (heap_r < que.size()) {
heap_r++;
std::push_heap(que.begin(), que.begin() + heap_r);
}
v = que.front().to;
std::pop_heap(que.begin(), que.end());
que.pop_back();
heap_r--;
}
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto e = g.elist[i];
if (!e.cap) continue;
Cost cost = e.cost - dual_dist[e.to].first + dual_v;
if (dual_dist[e.to].second - dist_v > cost) {
Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
if (dist_to == dist_v) {
que_min.push_back(e.to);
} else {
que.push_back(Q{dist_to, e.to});
}
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
}
for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
auto& e = g.elist[prev_e[v]];
e.cap += c;
g.elist[e.rev].cap -= c;
}
Cost d = -dual_dist[s].first;
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
};
} // namespace atcoder
#include <iostream>
#include <vector>
using namespace std;
using namespace atcoder;
using ll = long long;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<int> x(n), y(n);
vector<ll> v(n);
for (int i = 0; i < n; i++) {
cin >> x[i] >> y[i] >> v[i];
}
int m;
cin >> m;
const int TEN9 = (int)(1e9);
vector<int> le(n + 1, -1), ri(n + 1, TEN9), dw(n + 1, -1), up(n + 1, TEN9);
for (int i = 0; i < m; i++) {
char c;
int a, b;
cin >> c >> a >> b;
if (c == 'L') le[b] = max(le[b], a);
if (c == 'R') ri[b] = min(ri[b], a);
if (c == 'D') dw[b] = max(dw[b], a);
if (c == 'U') up[b] = min(up[b], a);
}
for (int i = 1; i <= n; i++) {
le[i] = max(le[i], le[i - 1]);
ri[i] = min(ri[i], ri[i - 1]);
dw[i] = max(dw[i], dw[i - 1]);
up[i] = min(up[i], up[i - 1]);
}
ll ans = 0;
const ll BIG = ll(1e15);
for (int k = 1; k <= n; k++) {
mcf_graph<int, ll> g(2 * n + 2 * k + 2);
int sv = 2 * n + 2 * k, tv = sv + 1;
for (int i = 0; i < n; i++) {
g.add_edge(i, n + i, 1, BIG - v[i]);
}
for (int i = 0; i < k; i++) {
g.add_edge(sv, 2 * n + i, 1, 0);
for (int j = 0; j < n; j++) {
if (le[i] < x[j] && x[j] < ri[k - 1 - i]) {
g.add_edge(2 * n + i, j, 1, 0);
}
if (dw[i] < y[j] && y[j] < up[k - 1 - i]) {
g.add_edge(n + j, 2 * n + k + i, 1, 0);
}
}
g.add_edge(2 * n + k + i, tv, 1, 0);
}
auto mcf = g.flow(sv, tv, TEN9);
if (mcf.first == k) {
ans = max(ans, k * BIG - mcf.second);
}
}
cout << ans << endl;
return 0;
}
提出情報
ジャッジ結果
| セット名 |
Sample |
All |
| 得点 / 配点 |
0 / 0 |
1300 / 1300 |
| 結果 |
|
|
| セット名 |
テストケース |
| Sample |
example_00, example_01, example_02, example_03 |
| All |
example_00, example_01, example_02, example_03, fixed_00, fixed_01, fixed_02, fixed_03, fixed_04, fixed_05, fixed_06, fixed_07, fixed_08, fixed_09, fixed_10, fixed_11, manyrand_00, manyrand_01, manyrand_02, manyrand_03, manyuse_00, manyuse_01, manyuse_02, manyuse_03, naname_00, naname_01, naname_02, naname_03, naname_04, naname_05, naname_06, naname_07, naname_08, naname_09, naname_10, naname_11, naname_line_00, naname_line_01, perm_00, perm_01, perm_02, perm_03, perm_04, perm_05, perm_06, perm_07, perm_08, perm_09, perm_10, perm_11, rand_00, rand_01, square_00, square_01, square_02, square_03, twinkle2_00, twinkle2_01, twinkle2_02, twinkle_00, twinkle_01, twinkle_02, twinkle_03, twinkle_04, twinkle_05, twinkle_06, twinkle_07, twinkle_08, twinkle_09, verysmall_rand_00, verysmall_rand_01 |
| ケース名 |
結果 |
実行時間 |
メモリ |
| example_00 |
AC |
7 ms |
3512 KiB |
| example_01 |
AC |
2 ms |
3504 KiB |
| example_02 |
AC |
2 ms |
3628 KiB |
| example_03 |
AC |
2 ms |
3632 KiB |
| fixed_00 |
AC |
2 ms |
3688 KiB |
| fixed_01 |
AC |
56 ms |
3992 KiB |
| fixed_02 |
AC |
27 ms |
3880 KiB |
| fixed_03 |
AC |
12 ms |
3752 KiB |
| fixed_04 |
AC |
6 ms |
3704 KiB |
| fixed_05 |
AC |
50 ms |
3972 KiB |
| fixed_06 |
AC |
5 ms |
3740 KiB |
| fixed_07 |
AC |
54 ms |
3968 KiB |
| fixed_08 |
AC |
28 ms |
3968 KiB |
| fixed_09 |
AC |
71 ms |
4076 KiB |
| fixed_10 |
AC |
10 ms |
3728 KiB |
| fixed_11 |
AC |
45 ms |
3960 KiB |
| manyrand_00 |
AC |
100 ms |
4932 KiB |
| manyrand_01 |
AC |
96 ms |
4268 KiB |
| manyrand_02 |
AC |
105 ms |
4580 KiB |
| manyrand_03 |
AC |
95 ms |
4340 KiB |
| manyuse_00 |
AC |
10 ms |
3796 KiB |
| manyuse_01 |
AC |
7 ms |
3672 KiB |
| manyuse_02 |
AC |
6 ms |
3728 KiB |
| manyuse_03 |
AC |
16 ms |
3684 KiB |
| naname_00 |
AC |
4 ms |
3692 KiB |
| naname_01 |
AC |
52 ms |
3880 KiB |
| naname_02 |
AC |
19 ms |
3824 KiB |
| naname_03 |
AC |
10 ms |
3668 KiB |
| naname_04 |
AC |
55 ms |
3884 KiB |
| naname_05 |
AC |
6 ms |
3616 KiB |
| naname_06 |
AC |
5 ms |
3748 KiB |
| naname_07 |
AC |
52 ms |
3884 KiB |
| naname_08 |
AC |
6 ms |
3704 KiB |
| naname_09 |
AC |
5 ms |
3744 KiB |
| naname_10 |
AC |
18 ms |
3696 KiB |
| naname_11 |
AC |
40 ms |
3892 KiB |
| naname_line_00 |
AC |
17 ms |
3816 KiB |
| naname_line_01 |
AC |
19 ms |
3744 KiB |
| perm_00 |
AC |
4 ms |
3624 KiB |
| perm_01 |
AC |
4 ms |
3692 KiB |
| perm_02 |
AC |
5 ms |
3764 KiB |
| perm_03 |
AC |
5 ms |
3744 KiB |
| perm_04 |
AC |
4 ms |
3712 KiB |
| perm_05 |
AC |
3 ms |
3620 KiB |
| perm_06 |
AC |
3 ms |
3620 KiB |
| perm_07 |
AC |
3 ms |
3672 KiB |
| perm_08 |
AC |
5 ms |
3696 KiB |
| perm_09 |
AC |
5 ms |
3748 KiB |
| perm_10 |
AC |
5 ms |
3692 KiB |
| perm_11 |
AC |
6 ms |
3568 KiB |
| rand_00 |
AC |
9 ms |
3652 KiB |
| rand_01 |
AC |
3 ms |
3516 KiB |
| square_00 |
AC |
4 ms |
3776 KiB |
| square_01 |
AC |
3 ms |
3696 KiB |
| square_02 |
AC |
4 ms |
3776 KiB |
| square_03 |
AC |
3 ms |
3764 KiB |
| twinkle2_00 |
AC |
22 ms |
3744 KiB |
| twinkle2_01 |
AC |
14 ms |
3636 KiB |
| twinkle2_02 |
AC |
17 ms |
3688 KiB |
| twinkle_00 |
AC |
19 ms |
3800 KiB |
| twinkle_01 |
AC |
12 ms |
3752 KiB |
| twinkle_02 |
AC |
17 ms |
3728 KiB |
| twinkle_03 |
AC |
13 ms |
3672 KiB |
| twinkle_04 |
AC |
12 ms |
3756 KiB |
| twinkle_05 |
AC |
11 ms |
3800 KiB |
| twinkle_06 |
AC |
14 ms |
3676 KiB |
| twinkle_07 |
AC |
14 ms |
3676 KiB |
| twinkle_08 |
AC |
15 ms |
3828 KiB |
| twinkle_09 |
AC |
15 ms |
3728 KiB |
| verysmall_rand_00 |
AC |
2 ms |
3588 KiB |
| verysmall_rand_01 |
AC |
2 ms |
3520 KiB |