Submission #64520467
Source Code Expand
//#define _GLIBCXX_DEBUG
// C++ includes used for precompiling -*- C++ -*-
// Copyright (C) 2003-2019 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file stdc++.h
* This is an implementation file for a precompiled header.
*/
// 17.4.1.2 Headers
// C
#include <cassert>
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <ciso646>
#include <climits>
#include <clocale>
#include <cmath>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cwchar>
#include <cwctype>
#include <ccomplex>
#include <cfenv>
#include <cinttypes>
#include <cstdalign>
#include <cstdbool>
#include <cstdint>
#include <ctgmath>
#include <cuchar>
// C++
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <locale>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <typeinfo>
#include <utility>
#include <valarray>
#include <vector>
#include <array>
#include <atomic>
#include <chrono>
#include <codecvt>
#include <condition_variable>
#include <forward_list>
#include <future>
#include <initializer_list>
#include <mutex>
#include <random>
#include <ratio>
#include <regex>
#include <scoped_allocator>
#include <system_error>
#include <thread>
#include <tuple>
#include <typeindex>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <shared_mutex>
#include <any>
#include <charconv>
// #include <execution>
#include <filesystem>
#include <optional>
#include <memory_resource>
#include <string_view>
#include <variant>
#include <bit>
// #include <compare>
// #include <span>
// #include <syncstream>
#include <version>
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class mint,
int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
static constexpr int rank2 = bsf_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::ceil_pow2(n);
static const fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[bsf(~(unsigned int)(s))];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[bsf(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::ceil_pow2(n);
static const fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[bsf(~(unsigned int)(s))];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL *
mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[bsf(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
struct dsu {
public:
dsu() : _n(0) {}
explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}
int merge(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
int x = leader(a), y = leader(b);
if (x == y) return x;
if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
parent_or_size[x] += parent_or_size[y];
parent_or_size[y] = x;
return x;
}
bool same(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
return leader(a) == leader(b);
}
int leader(int a) {
assert(0 <= a && a < _n);
if (parent_or_size[a] < 0) return a;
return parent_or_size[a] = leader(parent_or_size[a]);
}
int size(int a) {
assert(0 <= a && a < _n);
return -parent_or_size[leader(a)];
}
std::vector<std::vector<int>> groups() {
std::vector<int> leader_buf(_n), group_size(_n);
for (int i = 0; i < _n; i++) {
leader_buf[i] = leader(i);
group_size[leader_buf[i]]++;
}
std::vector<std::vector<int>> result(_n);
for (int i = 0; i < _n; i++) {
result[i].reserve(group_size[i]);
}
for (int i = 0; i < _n; i++) {
result[leader_buf[i]].push_back(i);
}
result.erase(
std::remove_if(result.begin(), result.end(),
[&](const std::vector<int>& v) { return v.empty(); }),
result.end());
return result;
}
private:
int _n;
std::vector<int> parent_or_size;
};
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
template <class T> struct fenwick_tree {
using U = internal::to_unsigned_t<T>;
public:
fenwick_tree() : _n(0) {}
explicit fenwick_tree(int n) : _n(n), data(n) {}
void add(int p, T x) {
assert(0 <= p && p < _n);
p++;
while (p <= _n) {
data[p - 1] += U(x);
p += p & -p;
}
}
T sum(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
return sum(r) - sum(l);
}
private:
int _n;
std::vector<U> data;
U sum(int r) {
U s = 0;
while (r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
namespace atcoder {
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>
namespace atcoder {
long long pow_mod(long long x, long long n, int m) {
assert(0 <= n && 1 <= m);
if (m == 1) return 0;
internal::barrett bt((unsigned int)(m));
unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
while (n) {
if (n & 1) r = bt.mul(r, y);
y = bt.mul(y, y);
n >>= 1;
}
return r;
}
long long inv_mod(long long x, long long m) {
assert(1 <= m);
auto z = internal::inv_gcd(x, m);
assert(z.first == 1);
return z.second;
}
std::pair<long long, long long> crt(const std::vector<long long>& r,
const std::vector<long long>& m) {
assert(r.size() == m.size());
int n = int(r.size());
long long r0 = 0, m0 = 1;
for (int i = 0; i < n; i++) {
assert(1 <= m[i]);
long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
if (m0 < m1) {
std::swap(r0, r1);
std::swap(m0, m1);
}
if (m0 % m1 == 0) {
if (r0 % m1 != r1) return {0, 0};
continue;
}
long long g, im;
std::tie(g, im) = internal::inv_gcd(m0, m1);
long long u1 = (m1 / g);
if ((r1 - r0) % g) return {0, 0};
long long x = (r1 - r0) / g % u1 * im % u1;
r0 += x * m0;
m0 *= u1; // -> lcm(m0, m1)
if (r0 < 0) r0 += m0;
}
return {r0, m0};
}
long long floor_sum(long long n, long long m, long long a, long long b) {
assert(0 <= n && n < (1LL << 32));
assert(1 <= m && m < (1LL << 32));
unsigned long long ans = 0;
if (a < 0) {
unsigned long long a2 = internal::safe_mod(a, m);
ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
a = a2;
}
if (b < 0) {
unsigned long long b2 = internal::safe_mod(b, m);
ans -= 1ULL * n * ((b2 - b) / m);
b = b2;
}
return ans + internal::floor_sum_unsigned(n, m, a, b);
}
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
#include <vector>
namespace atcoder {
namespace internal {
template <class T> struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
} // namespace atcoder
namespace atcoder {
template <class Cap> struct mf_graph {
public:
mf_graph() : _n(0) {}
explicit mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d =
self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) return res;
}
level[v] = _n;
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
#include <algorithm>
#include <utility>
#include <vector>
namespace atcoder {
namespace internal {
template <class E> struct csr {
std::vector<int> start;
std::vector<E> elist;
explicit csr(int n, const std::vector<std::pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
} // namespace internal
} // namespace atcoder
namespace atcoder {
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
explicit mcf_graph(int n) : _n(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
assert(0 <= cost);
int m = int(_edges.size());
_edges.push_back({from, to, cap, 0, cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(_edges.size());
assert(0 <= i && i < m);
return _edges[i];
}
std::vector<edge> edges() { return _edges; }
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
int m = int(_edges.size());
std::vector<int> edge_idx(m);
auto g = [&]() {
std::vector<int> degree(_n), redge_idx(m);
std::vector<std::pair<int, _edge>> elist;
elist.reserve(2 * m);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] = degree[e.from]++;
redge_idx[i] = degree[e.to]++;
elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
}
auto _g = internal::csr<_edge>(_n, elist);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] += _g.start[e.from];
redge_idx[i] += _g.start[e.to];
_g.elist[edge_idx[i]].rev = redge_idx[i];
_g.elist[redge_idx[i]].rev = edge_idx[i];
}
return _g;
}();
auto result = slope(g, s, t, flow_limit);
for (int i = 0; i < m; i++) {
auto e = g.elist[edge_idx[i]];
_edges[i].flow = _edges[i].cap - e.cap;
}
return result;
}
private:
int _n;
std::vector<edge> _edges;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
int s,
int t,
Cap flow_limit) {
std::vector<std::pair<Cost, Cost>> dual_dist(_n);
std::vector<int> prev_e(_n);
std::vector<bool> vis(_n);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::vector<int> que_min;
std::vector<Q> que;
auto dual_ref = [&]() {
for (int i = 0; i < _n; i++) {
dual_dist[i].second = std::numeric_limits<Cost>::max();
}
std::fill(vis.begin(), vis.end(), false);
que_min.clear();
que.clear();
size_t heap_r = 0;
dual_dist[s].second = 0;
que_min.push_back(s);
while (!que_min.empty() || !que.empty()) {
int v;
if (!que_min.empty()) {
v = que_min.back();
que_min.pop_back();
} else {
while (heap_r < que.size()) {
heap_r++;
std::push_heap(que.begin(), que.begin() + heap_r);
}
v = que.front().to;
std::pop_heap(que.begin(), que.end());
que.pop_back();
heap_r--;
}
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto e = g.elist[i];
if (!e.cap) continue;
Cost cost = e.cost - dual_dist[e.to].first + dual_v;
if (dual_dist[e.to].second - dist_v > cost) {
Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
if (dist_to == dist_v) {
que_min.push_back(e.to);
} else {
que.push_back(Q{dist_to, e.to});
}
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
}
for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
auto& e = g.elist[prev_e[v]];
e.cap += c;
g.elist[e.rev].cap -= c;
}
Cost d = -dual_dist[s].first;
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <vector>
#include <algorithm>
#include <utility>
#include <vector>
namespace atcoder {
namespace internal {
struct scc_graph {
public:
explicit scc_graph(int n) : _n(n) {}
int num_vertices() { return _n; }
void add_edge(int from, int to) { edges.push_back({from, {to}}); }
std::pair<int, std::vector<int>> scc_ids() {
auto g = csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = std::min(low[v], low[to]);
} else {
low[v] = std::min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto& x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
std::vector<std::vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
std::vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
std::vector<std::vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
private:
int _n;
struct edge {
int to;
};
std::vector<std::pair<int, edge>> edges;
};
} // namespace internal
} // namespace atcoder
namespace atcoder {
struct scc_graph {
public:
scc_graph() : internal(0) {}
explicit scc_graph(int n) : internal(n) {}
void add_edge(int from, int to) {
int n = internal.num_vertices();
assert(0 <= from && from < n);
assert(0 <= to && to < n);
internal.add_edge(from, to);
}
std::vector<std::vector<int>> scc() { return internal.scc(); }
private:
internal::scc_graph internal;
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) const {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <bool (*f)(S)> int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa =
sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
struct two_sat {
public:
two_sat() : _n(0), scc(0) {}
explicit two_sat(int n) : _n(n), _answer(n), scc(2 * n) {}
void add_clause(int i, bool f, int j, bool g) {
assert(0 <= i && i < _n);
assert(0 <= j && j < _n);
scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0));
scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0));
}
bool satisfiable() {
auto id = scc.scc_ids().second;
for (int i = 0; i < _n; i++) {
if (id[2 * i] == id[2 * i + 1]) return false;
_answer[i] = id[2 * i] < id[2 * i + 1];
}
return true;
}
std::vector<bool> answer() { return _answer; }
private:
int _n;
std::vector<bool> _answer;
internal::scc_graph scc;
};
} // namespace atcoder
using namespace atcoder;
#pragma GCC target("avx2,fma")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
using namespace std;
using ll = long long;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vvvvl = vector<vvvl>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vvvvi = vector<vvvi>;
typedef pair<ll, ll> P;
typedef pair<long double, ll> Pd;
typedef tuple<ll, ll, ll> PP;
typedef tuple<ll, ll, ll, ll> PPP;
using vs = vector<string>;
using vvs = vector<vs>;
using vvvs = vector<vvs>;
using vp = vector<P>;
using vvp = vector<vp>;
using vvvp = vector<vvp>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vvvb = vector<vvb>;
#define lb(v, k) (lower_bound(all(v), (k)) - v.begin())
#define ub(v, k) (upper_bound(all(v), (k)) - v.begin())
#define eb emplace_back
#define fi first
#define se second
#define pq(T) priority_queue<T>
#define pqr(T) priority_queue<T, vector<T>, greater<T>>
#define pcount(i) __builtin_popcountll(i)
#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)
#define repi(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++)
#define all(a) (a).begin(), (a).end()
#define rll(a) (a).rbegin(), (a).rend()
#define double long double
#define yesno(i) if(i)cout<<"yes"<<endl;else cout<<"no"<<endl;
#define YesNo(i) if(i)cout<<"Yes"<<endl;else cout<<"No"<<endl;
#define YESNO(i) if(i)cout<<"YES"<<endl;else cout<<"NO"<<endl;
#define pb push_back
#define cinvec(x) \
for (ll hfuaig = 0; hfuaig < x.size(); hfuaig++) \
{ \
cin >> x.at(hfuaig); \
}
#define coutvece(x) \
for (ll hfuaig = 0; hfuaig < x.size(); hfuaig++) \
{ \
cout << x.at(hfuaig) << endl; \
}
#define coutvec(x) \
for (ll hfuaig = 0; hfuaig < x.size(); hfuaig++) \
{ \
cout << x.at(hfuaig) << ' '; \
}\
cout << endl;
vl dx = {-1,1 ,0 ,0 ,-1, 1, -1, 1};
vl dy = {0 ,0 ,-1,1 ,-1, -1, 1, 1};
pair<ll, ll> dxy(pair<ll, ll> a, ll i){
return make_pair(a.fi + dx[i], a.se + dy[i]);
}
template <typename T>
bool chmax(T &a, const T& b){
if(a < b){
a = b;
return true;
}
return false;
}
template <typename T>
bool chmin(T &a, const T& b){
if(a > b){
a = b;
return true;
}
return false;
}
ll mod = 998244353;
int modd = 998244353;
const ll Mod = 1000000007;
const ll inf = 999999999999999999LL;
const int INF = 999999999;
using mint = modint998244353;
using mmint = modint1000000007;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
using vvvvm = vector<vvvm>;
using vvvvvm = vector<vvvvm>;
using vmm = vector<mmint>;
using vvmm = vector<vmm>;
using vvvmm = vector<vvmm>;
ll mygcd(ll A, ll B){
if(A == -1)return B;
if(B == -1)return A;
if(B == 0 || A == 0){
return A ^ B;
}
if(A % B == 0){
return B;
}
else{
return mygcd(B, A % B);
}
}
ll mylcm(ll A, ll B){
if(A == -1){
return B;
}
if(B == -1){
return A;
}
return A / mygcd(A, B) * B;
}
typedef struct Point_Coordinates {
double x, y;
} point;
typedef struct Point_Coordinatesll {
ll x, y;
} pointl;
long long modpow(long long a, long long n, long long mo) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mo;
a = a * a % mo;
n >>= 1;
}
return res % mo;
}
//円の位置関係
bool isd(double a, double b, double c){
if(c > (a + b) * (a + b)){
return false;
}
if(c == (a + b) * (a + b)){
return true;
}
if(abs(a - b) * abs(a - b) < c && c < (a + b) * (a + b)){
return true;
}
if(c == abs(a - b) * abs(a - b)){
return true;
}
if(c < abs(a - b) * abs(a - b)){
return false;
}
return true;
}
const int MAX = 100000;
int MOD1 = mod;
ll fact[MAX], inv_fact[MAX], inv[MAX], perm[MAX];
void init() {
MOD1 = mod;
// 初期値設定と1はじまりインデックスに直す
fact[0] = 1;
fact[1] = 1;
inv[0] = 1;
inv[1] = 1;
inv_fact[0] = 1;
inv_fact[1] = 1;
// メモの計算
repi(i, 2, MAX){
// 階乗
fact[i] = fact[i - 1] * i % MOD1;
// 逆元
inv[i] = MOD1 - inv[MOD1%i] * (MOD1 / i) % MOD1;
// 逆元の階乗
inv_fact[i] = inv_fact[i - 1] * inv[i] % MOD1;
}
perm[0] = 1;
rep(i, MAX - 1){
perm[i + 1] = ((ll)(i + 1) * perm[i]) % MOD1;
}
}
ll nck(int n, int k) {
if (n < k) return 0; // 例外処理
if (n < 0 || k < 0) return 0; // 例外処理
if(k == 0)return 1;
ll x = fact[n]; // n!の計算
ll y = inv_fact[n-k]; // (n-k)!の計算
ll z = inv_fact[k]; // k!の計算
return x * ((y * z) % MOD1) % MOD1; //二項係数の計算
}
ll npk(ll n, ll k){
return (nck(n, k) * perm[k]) % MOD1;
}
ll nhk(ll n, ll k){
return nck(n + k - 1, k);
}
struct graph{
ll N;
vvp G;
vl dis;
vl prev;
graph(ll n) : N(n){
G.resize(n);
}
void push(ll a, ll b){
G[a].push_back({b, 1});
}
void push(ll a, ll b, ll c){
G[a].push_back({b, c});
}
vl dijkstra(ll i){
dis.assign(N, inf);
prev.assign(N, -1);
priority_queue<P, vector<P>, greater<P>> piq; // 「仮の最短距離, 頂点」が小さい順に並ぶ
dis[i] = 0;
piq.emplace(dis[i], i);
while (!piq.empty()) {
P p = piq.top();
piq.pop();
ll v = p.second;
if (dis[v] < p.first) { // 最短距離で無ければ無視
continue;
}
for (auto &e : G[v]) {
if (dis[e.fi] > dis[v] + e.se) { // 最短距離候補なら priority_queue に追加
dis[e.fi] = dis[v] + e.se;
prev[e.fi] = v;
piq.emplace(dis[e.fi], e.fi);
}
}
}
return dis;
}
vl get_path(ll t){
vl path;
for (ll cur = t; cur != -1; cur = prev[cur]) {
path.push_back(cur);
}
reverse(path.begin(), path.end()); // 逆順なのでひっくり返す
return path;
}
};
struct BIT {
private:
vector<int> bit;
ll N;
public:
BIT(ll size) {
N = size;
bit.resize(N + 1, 0);
}
// 一点更新です
void add(ll a, ll w) {
for (int x = a; x <= N; x += x & -x) bit[x] += w;
}
// 1~Nまでの和を求める。
ll sum(ll a) {
ll ret = 0;
for (ll x = a; x > 0; x -= x & -x) ret += bit[x];
return ret;
}
};
//転倒数ライブラリ
ll numfalls(vl &A){
ll ans = 0;
ll N = A.size();
BIT b(N);
rep(i, N){
ans += i - b.sum(A.at(i));
b.add(A.at(i), 1);
}
return ans;
}
//#define _GLIBCXX_DEBUG
#define mint998 modint998244353
#define mint107 modint1000000007
//約数列挙
vector<long long> div(long long n) {
vector<long long> ret;
set<ll> re;
ll N = sqrt(n) + 1;
for (long long i = 1; i <= N; i++) {
if (n % i == 0) {
re.insert(n / i);
re.insert(i);
}
}
for(auto value :re){
ret.push_back(value);
}
return ret;
}
ll digit_sum(ll X){
ll ans = 0;
while(X > 0){
ans += X%10;
X/=10;
}
return ans;
}
void xypress(vl &A){
vl B = A;
sort(all(B));
B.erase(unique(B.begin(), B.end()), B.end());
vector<ll> res(A.size());
for (int i = 0; i < A.size(); ++i) {
res[i] = lower_bound(B.begin(), B.end(), A[i]) - B.begin();
}
A = res;
}
//素数列挙
std::vector<ll> prime( const ll N )
{
std::vector<bool> is_prime( N + 1 );
for( ll i = 0; i <= N; i++ )
{
is_prime[ i ] = true;
}
std::vector<ll> P;
for( ll i = 2; i <= N; i++ )
{
if( is_prime[ i ] )
{
for( ll j = 2 * i; j <= N; j += i )
{
is_prime[ j ] = false;
}
P.push_back( i );
}
}
return P;
}
//mod m での逆元
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
//mod 998244353での割り算
ll inve(ll a, ll b){
a %= mod;
return (a * modinv(b, mod) % mod);
}
vl vecsum(vl x){
vl s = {0};
rep(i, x.size()){
s.push_back(s.back() + x.at(i));
}
return s;
}
const int N_MAX = 1;
ll spf[N_MAX]; // smallest prime factors
void prepare_factorize() {
rep(i, N_MAX) spf[i] = i;
for (int p = 2; p * p <= N_MAX; p++) {
for (int i = p; i < N_MAX; i += p) {
if (spf[i] == i) spf[i] = p;
}
}
}
// 素因数分解
// その素因数が何個あるかのmapを返す
map<ll, ll> allprime(ll n) {
map<ll, ll> c;
while (n != 1) {
ll p = spf[n];
while (n % p == 0) {
n /= p;
c[p]++;
}
}
return c;
}///////////////////////////////////
vector<ll> primes(ll n){
set<ll> c;
for(ll i = 2;i * i <= n;i++){
if(n % i == 0)c.insert(i);
while(n % i == 0){
n /= i;
}
}
if(n != 1){
c.insert(n);
}
vl d;
for(auto a : c){
d.push_back(a);
}
return d;
}
vector<ll> SA_IS(vector<ll> str, ll var) {
if(str.size() == 1) {
vector<ll> ret(1,0);
return ret;
}
str.push_back(0);
ll si = str.size();
vector<ll> st(var, 0), en(var, 0);
vector<ll> SL(si, 0); //s..0, l..1
vector<ll> SA(si, -1);
vector<ll> LMS;
vector<ll> is_LMS(si, -1);
rep(i,str.size()) en[str[i]]++;
for(ll i = 1; i < var; i++) en[i] += en[i-1];
for(ll i = 1; i < var; i++) st[i] = en[i-1];
SL[str.size()-1] = 0;
for(ll i = str.size()-2; i >= 0; i--) {
if(str[i] == str[i+1]) {
SL[i] = SL[i+1];
continue;
}
if(str[i] > str[i+1]) SL[i] = 1;
else SL[i] = 0;
}
for(ll i = 1; i < str.size(); i++) {
if(SL[i] == 0 && SL[i-1] == 1) {
SA[--en[str[i]]] = i;
LMS.push_back(i);
is_LMS[i] = 1;
}
}
rep(i,var-1) en[i] = st[i+1];
en[var-1] = str.size();
rep(i,str.size()) if(SA[i] > 0 && SL[SA[i]-1] == 1) { SA[st[str[SA[i]-1]]++] = SA[i]-1; }
st[0] = 0;
for(ll i = 1; i < var; i++) st[i] = en[i-1];
for(ll i = 1; i < str.size(); i++) if(SA[i] != -1 && SL[SA[i]] == 0) { SA[i] = -1; }
for(ll i = str.size()-1; i >= 1; i--) if(SA[i] > 0 && SL[SA[i]-1] == 0) { SA[--en[str[SA[i]-1]]] = SA[i]-1; }
rep(i,var-1) en[i] = st[i+1];
en[var-1] = str.size();
ll counter = 0;
vector<ll> pre_sa, new_sa;
rep(i,SA.size()) if(is_LMS[SA[i]] != -1) {
is_LMS[SA[i]] = ++counter;
new_sa.clear();
for(ll j = SA[i]; j < SA.size(); j++) {
new_sa.push_back(str[j]);
if(j != SA[i] && is_LMS[j] != -1) {
break;
}
}
if(pre_sa == new_sa) {
is_LMS[SA[i]] = --counter;
}
pre_sa = new_sa;
}
vector<ll> new_str;
vector<ll> rev((ll)LMS.size()+1, 0);
counter = 0;
rep(i,is_LMS.size()) {
if(is_LMS[i] != -1) {
new_str.push_back(is_LMS[i]);
rev[counter++] = i;
}
}
vector<ll> rec = SA_IS(new_str, new_str.size()+1);
rep(i,SA.size()) SA[i] = -1;
for(ll i = rec.size()-1; i >= 0; i--) { SA[--en[str[rev[rec[i]]]]] = rev[rec[i]]; }
rep(i,var-1) en[i] = st[i+1];
en[var-1] = str.size();
rep(i,str.size()) if(SA[i] > 0 && SL[SA[i]-1] == 1) { SA[st[str[SA[i]-1]]++] = SA[i]-1; }
for(ll i = 1; i < str.size(); i++) if(SA[i] != -1 && SL[SA[i]] == 0) { SA[i] = -1; }
for(ll i = str.size()-1; i >= 1; i--) if(SA[i] > 0 && SL[SA[i]-1] == 0) { SA[--en[str[SA[i]-1]]] = SA[i]-1; }
SA.erase(SA.begin());
return SA;
}
int Judge(point &a, point &b, point &c, point &d) {
double s, t;
s = (a.x - b.x) * (c.y - a.y) - (a.y - b.y) * (c.x - a.x);
t = (a.x - b.x) * (d.y - a.y) - (a.y - b.y) * (d.x - a.x);
if (s * t > 0)
return false;
s = (c.x - d.x) * (a.y - c.y) - (c.y - d.y) * (a.x - c.x);
t = (c.x - d.x) * (b.y - c.y) - (c.y - d.y) * (b.x - c.x);
if (s * t > 0)
return false;
return true;
}
int Judgel(pointl &a, pointl &b, pointl &c, pointl &d) {
ll s, t;
s = (a.x - b.x) * (c.y - a.y) - (a.y - b.y) * (c.x - a.x);
t = (a.x - b.x) * (d.y - a.y) - (a.y - b.y) * (d.x - a.x);
if (s * t > 0)
return false;
s = (c.x - d.x) * (a.y - c.y) - (c.y - d.y) * (a.x - c.x);
t = (c.x - d.x) * (b.y - c.y) - (c.y - d.y) * (b.x - c.x);
if (s * t > 0)
return false;
return true;
}
double kyori(point &a, point &b){
double x = abs(a.x - b.x), y = abs(a.y - b.y);
return sqrt(x * x + y * y);
}
double eps = 1;
struct Edge {
ll to;
};
using Graph = vector<vector<Edge>>;
vector<ll> topo_sort(const Graph &G) { // bfs
vector<ll> ans;
ll n = (ll)G.size();
vector<ll> ind(n); // ind[i]: 頂点iに入る辺の数(次数)
for (ll i = 0; i < n; i++) { // 次数を数えておく
for (auto e : G[i]) {
ind[e.to]++;
}
}
queue<ll> que;
for (ll i = 0; i < n; i++) { // 次数が0の点をキューに入れる
if (ind[i] == 0) {
que.push(i);
}
}
while (!que.empty()) { // 幅優先探索
ll now = que.front();
ans.push_back(now);
que.pop();
for (auto e : G[now]) {
ind[e.to]--;
if (ind[e.to] == 0) {
que.push(e.to);
}
}
}
return ans;
}
struct LCA {
vector<vector<int>> parent; // parent[k][u]:= u の 2^k 先の親
vector<int> dist; // root からの距離
LCA(const Graph &G, int root = 0) { init(G, root); }
// 初期化
void init(const Graph &G, int root = 0) {
int V = G.size();
int K = 1;
while ((1 << K) < V) K++;
parent.assign(K, vector<int>(V, -1));
dist.assign(V, -1);
dfs(G, root, -1, 0);
for (int k = 0; k + 1 < K; k++) {
for (int v = 0; v < V; v++) {
if (parent[k][v] < 0) {
parent[k + 1][v] = -1;
} else {
parent[k + 1][v] = parent[k][parent[k][v]];
}
}
}
}
// 根からの距離と1つ先の頂点を求める
void dfs(const Graph &G, int v, int p, int d) {
parent[0][v] = p;
dist[v] = d;
for (auto e : G[v]) {
if (e.to != p) dfs(G, e.to, v, d + 1);
}
}
int query(int u, int v) {
if (dist[u] < dist[v]) swap(u, v); // u の方が深いとする
int K = parent.size();
// LCA までの距離を同じにする
for (int k = 0; k < K; k++) {
if ((dist[u] - dist[v]) >> k & 1) {
u = parent[k][u];
}
}
// 二分探索で LCA を求める
if (u == v) return u;
for (int k = K - 1; k >= 0; k--) {
if (parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
int get_dist(int u, int v) { return dist[u] + dist[v] - 2 * dist[query(u, v)]; }
bool is_on_path(int u, int v, int a) { return get_dist(u, a) + get_dist(a, v) == get_dist(u, v); }
};
struct matrix{
ll h, w;
vvl X;
matrix(ll H, ll W) : h(H), w(W){
init();
}
void init(){
X.assign(h, vl(w, 0));
}
void set(ll H, ll W, ll c){
X.at(H).at(W) = c;
}
ll get(ll H, ll W){
return X.at(H).at(W);
}
};
struct rollinghash{
__int128_t m = (1LL << 61) - 1;
__int128_t base;
string S;
int N;
vl h, sh, pw;
rollinghash(string x) : S(x), N((int)x.size()){
base = rand() % (m - 2) + 2;
st();
}
void st(){
h.assign(N + 1, 0);
sh.assign(N + 1, 0);
pw.assign(N + 1, 1);
for(int i = 0;i < N;i++){
pw.at(i + 1) = (__int128_t)pw.at(i) * base % m;
}
for(int i = 0;i < N;i++){
h.at(i + 1) = ((__int128_t)h.at(i) * base + (__int128_t)S.at(i)) % m;
}
for(int i = N - 1;i >= 0;i--){
sh.at(i) = ((__int128_t)sh.at(i + 1) * base + (__int128_t)S.at(i)) % m;
}
}
ll hash(int l, int r){
if(l == r){
return 0;
}
else if(l < r){
return (h.at(r) - (__int128_t)h.at(l) * pw.at(r - l) % m + m) % m;
}
else{
return (sh.at(r) - (__int128_t)sh.at(l) * pw.at(l - r) % m + m) % m;
}
}
ll range_hash(vector<pair<int, int>> p){
ll now = 0, ret = 0;
reverse(all(p));
for(int i = 0;i < p.size();i++){
ret += (__int128_t)hash(p.at(i).fi, p.at(i).se) * pw.at(now) % m;
ret %= m;
now += abs(p.at(i).fi - p.at(i).se);
}
return ret;
}
ll range_hash(vector<pair<ll, ll>> p){
ll now = 0, ret = 0;
reverse(all(p));
for(int i = 0;i < p.size();i++){
ret += (__int128_t)hash(p.at(i).fi, p.at(i).se) * pw.at(now) % m;
ret %= m;
now += abs(p.at(i).fi - p.at(i).se);
}
return ret;
}
};
class CentroidDecomposition
{
public:
int V;
vector<vector<ll> > G;
vector<bool> used;
//sz:重心分解後の最大部分木に含まれる頂点の数(自分を含める)
//par:重心分解後の親の頂点
vector<ll> sz, par;
//部分木のサイズを計算
void calcSize(ll u,ll p){
sz[u] = 1;
for(ll v : G[u]){
if(!used[v] && v != p){
calcSize(v,u);
sz[u] += sz[v];
}
}
}
void cdBuild(ll u,ll p){
calcSize(u,-1);
ll tot = sz[u];
bool ok = false;
ll pp = -1;
//いま見ている部分木での重心を見つける
while(!ok){
ok = true;
for(ll v : G[u]){
if(!used[v] && v != pp && 2*sz[v] > tot){
pp = u, u = v, ok = false;
break;
}
}
}
par[u] = p;
//何らかの操作
used[u] = true;
//深さ優先でたどる
for(ll v : G[u]){
if(!used[v]){
cdBuild(v,u);
}
}
}
CentroidDecomposition(ll node_size) : V(node_size), G(V), used(V, false)
, sz(V, 0), par(V, -1){}
void add_edge(ll u,ll v){
G[u].push_back(v), G[v].push_back(u);
}
void build(){
cdBuild(0,-1);
}
};
template <typename T, typename S>
istream &operator>>(istream &a, pair<T, S> &b){
a >> b.fi >> b.se;
return a;
}
template <typename T, typename S>
ostream &operator<<(ostream &a, pair<T, S> &b){
a << b.fi << ' ' << b.se;
return a;
}
template <typename T>
istream &operator>>(istream &a, vector<T> &b){
rep(i, b.size()){
a >> b.at(i);
}
return a;
}
template <typename T>
ostream &operator<<(ostream &a, vector<T> &b){
rep(i, b.size()){
a << b.at(i) << " ";
}
return a;
}
template <typename T>
ostream &operator<<(ostream &a, vector<vector<T>> &b){
rep(i, b.size()){
a << b.at(i);
if(i != b.size() - 1){
a<<endl;
}
}
return a;
}
template<typename T>
istream &operator>>(istream &a, set<T> &b){
T tmp;
a >> tmp;
b.insert(tmp);
return a;
}
void scan(){}
template <class T, class... S>
void scan(T &head, S &... plus){
cin >> head;
scan(plus...);
}
void out(){}
template <class T, class... S>
void out(const T &head, const S &... plus){
cout << head << endl;
out(plus...);
}
//行列の乗算
vvl matrix_mult(vvl X, vvl Y) {
vvl Z(X.size(), vl(Y[0].size()));
rep(i, X.size()) {
rep(k, Y.size()) {
rep(j, Y[0].size()) {
Z[i][j] = (Z[i][j] + X[i][k] * Y[k][j]) % mod;
}
}
}
return Z;
}
//A^nの計算
vvl matrix_pow(vvl A, ll n) {
vvl B(A.size(), vl(A[0].size()));
//単位行列でBを初期化
rep(i, B.size()) {
B[i][i] = 1;
}
while (n>0) {
if (n & 1) { B = matrix_mult(B, A); }
A = matrix_mult(A, A);
n = n >> 1;
}
return B;
}
template< typename T >
struct FormalPowerSeries : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeries;
P pre(int deg) const {
return P(begin(*this), begin(*this) + min((int) this->size(), deg));
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] += r[i];
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
auto ret = convolution(*this, r);
return *this = {begin(ret), end(ret)};
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P &operator%=(const P &r) {
return *this -= *this / r * r;
}
// https://judge.yosupo.jp/problem/division_of_polynomials
pair< P, P > div_mod(const P &r) {
P q = *this / r;
return make_pair(q, *this - q * r);
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
P &operator*=(const T &v) {
for(int i = 0; i < this->size(); i++) (*this)[i] *= v;
return *this;
}
P dot(P r) const {
P ret(min(this->size(), r.size()));
for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
P operator>>(int sz) const {
if(this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
T operator()(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
P diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// https://judge.yosupo.jp/problem/inv_of_formal_power_series
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
// https://judge.yosupo.jp/problem/log_of_formal_power_series
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == T(1));
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
// https://judge.yosupo.jp/problem/sqrt_of_formal_power_series
P sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt);
if(ret.empty()) return {};
ret = ret << (i / 2);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
auto sqr = T(get_sqrt((*this)[0]));
if(sqr * sqr != (*this)[0]) return {};
P ret{sqr};
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const {
return sqrt(deg, get_sqrt);
}
// https://judge.yosupo.jp/problem/exp_of_formal_power_series
// F(0) must be 0
P exp(int deg = -1) const {
if(deg == -1) deg = this->size();
assert((*this)[0] == T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
// https://judge.yosupo.jp/problem/pow_of_formal_power_series
P pow(int64_t k, int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if(k == 0) {
P ret(deg, T(0));
ret[0] = T(1);
return ret;
}
for(int i = 0; i < n; i++) {
if(i * k > deg) return P(deg, T(0));
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
ret = (ret << (i * k)).pre(deg);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return *this;
}
// https://yukicoder.me/problems/no/215
P mod_pow(int64_t k, P g) const {
P modinv = g.rev().inv();
auto get_div = [&](P base) {
if(base.size() < g.size()) {
base.clear();
return base;
}
int n = base.size() - g.size() + 1;
return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
};
P x(*this), ret{1};
while(k > 0) {
if(k & 1) {
ret *= x;
ret -= get_div(ret) * g;
ret.shrink();
}
x *= x;
x -= get_div(x) * g;
x.shrink();
k >>= 1;
}
return ret;
}
// https://judge.yosupo.jp/problem/polynomial_taylor_shift
P taylor_shift(T c) const {
int n = (int) this->size();
vector< T > fact(n), rfact(n);
fact[0] = rfact[0] = T(1);
for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);
rfact[n - 1] = T(1) / fact[n - 1];
for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);
P p(*this);
for(int i = 0; i < n; i++) p[i] *= fact[i];
p = p.rev();
P bs(n, T(1));
for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
p = (p * bs).pre(n);
p = p.rev();
for(int i = 0; i < n; i++) p[i] *= rfact[i];
return p;
}
};
template< typename Mint >
using FPS = FormalPowerSeries< Mint >;
// Bostan-Mori
// find [x^N] P(x)/Q(x), O(K log K log N)
// deg(Q(x)) = K, deg(P(x)) < K, Q[0] = 1
template <typename mint> mint BostanMori(const FPS<mint> &P, const FPS<mint> &Q, long long N) {
assert(!P.empty() && !Q.empty());
if (N == 0) return P[0] / Q[0];
int qdeg = (int)Q.size();
FPS<mint> P2{P}, minusQ{Q};
P2.resize(qdeg - 1);
for (int i = 1; i < (int)Q.size(); i += 2) minusQ[i] = -minusQ[i];
P2 *= minusQ;
FPS<mint> Q2 = Q * minusQ;
FPS<mint> S(qdeg - 1), T(qdeg);
for (int i = 0; i < (int)S.size(); ++i) {
S[i] = (N % 2 == 0 ? P2[i * 2] : P2[i * 2 + 1]);
}
for (int i = 0; i < (int)T.size(); ++i) {
T[i] = Q2[i * 2];
}
return BostanMori(S, T, N >> 1);
}
// Union-Find, we can undo
struct UnionFind {
// core member
vector<int> par;
stack<pair<int,int>> history;
// constructor
UnionFind() {}
UnionFind(int n) : par(n, -1) { }
void init(int n) { par.assign(n, -1); }
// core methods
int root(int x) {
if (par[x] < 0) return x;
else return root(par[x]);
}
bool same(int x, int y) {
return root(x) == root(y);
}
bool merge(int x, int y) {
x = root(x), y = root(y);
history.emplace(x, par[x]);
history.emplace(y, par[y]);
if (x == y) return false;
if (par[x] > par[y]) swap(x, y); // merge technique
par[x] += par[y];
par[y] = x;
return true;
}
int size(int x) {
return -par[root(x)];
}
// 1-step undo
void undo() {
for (int iter = 0; iter < 2; ++iter) {
par[history.top().first] = history.top().second;
history.pop();
}
}
// erase history
void snapshot() {
while (!history.empty()) history.pop();
}
// all rollback
void rollback() {
while (!history.empty()) undo();
}
// debug
friend ostream& operator << (ostream &s, UnionFind uf) {
map<int, vector<int>> groups;
for (int i = 0; i < uf.par.size(); ++i) {
int r = uf.root(i);
groups[r].push_back(i);
}
for (const auto &it : groups) {
s << "group: ";
for (auto v : it.second) s << v << " ";
s << endl;
}
return s;
}
};
istream &operator>>(istream &a, mint &b){
ll tmp;
a >> tmp;
b = tmp;
return a;
}
ostream &operator<<(ostream &a, mint &b){
a << b.val();
return a;
}
istream &operator>>(istream &a, mmint &b){
ll tmp;
a >> tmp;
b = tmp;
return a;
}
ostream &operator<<(ostream &a, mmint &b){
a << b.val();
return a;
}
ll op(ll a, ll b){
return max(a, b);
}
ll e(){
return 0;
}
ll mapping(P a, ll b){
return max(b + a.fi, a.se);
}
P composition(P a, P b){
return make_pair(b.fi + a.fi, max(a.se, b.se + a.fi));
}
P id(){
return make_pair(0LL, -inf);
}
clock_t st;
void beg(ll ep, ll mo, bool nc, bool fac){
st = clock();
mod = mo;
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(20);
if(nc)init();//二項係数 階乗(fact[])
srand((unsigned int)time(NULL));
if(fac)prepare_factorize();//素因数分解
rep(i, ep){
eps /= 10;
}
}
ll kp = 0;
bool f(ll x){
if(x > kp){
return true;
}
else{
return false;
}
}
std::random_device rd;
std::mt19937 mt(rd());
void nowtime(){
cout << ((double)(clock()) - (double)(st)) / CLOCKS_PER_SEC << endl;
}
double nowtimed(){
return ((double)(clock()) - (double)(st)) / CLOCKS_PER_SEC;
}
ll sqr(ll a){
ll ok = 0, ng = 2000000000;
while(ng - ok > 1){
ll mi = (ok + ng) / 2;
if(mi * mi <= a){
ok = mi;
}
else{
ng = mi;
}
}
return ok;
}
int main()
{
beg(14, 998244353, true, false);
ll N;
cin >> N;
cout << sqr(N / 2) + sqr(N / 4) << endl;
}
Submission Info
Submission Time
2025-04-05 21:18:58+0900
Task
C - 2^a b^2
User
fact493
Language
C++ 23 (gcc 12.2)
Score
350
Code Size
98798 Byte
Status
AC
Exec Time
4 ms
Memory
6972 KiB
Compile Error
Main.cpp: In function ‘void xypress(vl&)’:
Main.cpp:2599:23: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
2599 | for (int i = 0; i < A.size(); ++i) {
| ~~^~~~~~~~~~
Main.cpp: In function ‘std::vector<long long int> SA_IS(std::vector<long long int>, ll)’:
Main.cpp:2718:21: warning: comparison of integer expressions of different signedness: ‘ll’ {aka ‘long long int’} and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
2718 | for(ll i = 1; i < str.size(); i++) {
| ~~^~~~~~~~~~~~
Main.cpp:2732:21: warning: comparison of integer expressions of different signedness: ‘ll’ {aka ‘long long int’} and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
2732 | for(ll i = 1; i < str.size(); i++) if(SA[i] != -1 && SL[SA[i]] == 0) { SA[i] = -1; }
| ~~^~~~~~~~~~~~
Main.cpp:2744:29: warning: comparison of integer expressions of different signedness: ‘ll’ {aka ‘long long int’} and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
2744 | for(ll j = SA[i]; j < SA.size(); j++) {
| ~~^~~~~~~~~~~
Main.cpp:2775:21: warning: comparison of integer expressions of different signedness: ‘ll’ {aka ‘long long int’} and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
2775 | for(ll i = 1; i < str.size(); i++) if(SA[i] != -1 && SL[SA[i]] == 0) { SA[i] = -1; }
| ~~^~~~~~~~~~~~
Main.cpp: In member function ‘ll rollinghash::range_hash(std::vector<std::pair<int, int> >)’:
Main.cpp:2952:25: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<std::pair<int, int> >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
2952 | for(int i = 0;i < p.size();i++){
| ~~^~~~~~~~~~
Main.cpp: In member function ‘ll rollinghash::range_hash(std::vector<std::pair<long long int, long long int> >)’:
Main.cpp:2962:25: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<std::pair<long long int, long long int> >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
2962 | for(int i = 0;i < p.size();i++){
| ~~^~~~~~~~~~
Main.cpp: In function ‘std::ostream& operator<<(std::ostream&, UnionFind)’:
Main.cpp:3468:27: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
3468 | for (int i = 0; i < uf.par.size(); ++i) {
| ~~^~~~~~~~~~~~~~~
Judge Result
Set Name
Sample
All
Score / Max Score
0 / 0
350 / 350
Status
Set Name
Test Cases
Sample
example_00.txt, example_01.txt, example_02.txt
All
example_00.txt, example_01.txt, example_02.txt, hand_00.txt, hand_01.txt, hand_02.txt, hand_03.txt, hand_04.txt, hand_05.txt, hand_06.txt, hand_07.txt, hand_08.txt, hand_09.txt, hand_10.txt, random_00.txt, random_01.txt, random_02.txt, random_03.txt, random_04.txt, random_05.txt, random_06.txt, random_07.txt, random_08.txt, random_09.txt, random_10.txt, random_11.txt, random_12.txt, random_13.txt, random_14.txt
Case Name
Status
Exec Time
Memory
example_00.txt
AC
4 ms
6800 KiB
example_01.txt
AC
4 ms
6968 KiB
example_02.txt
AC
4 ms
6872 KiB
hand_00.txt
AC
4 ms
6848 KiB
hand_01.txt
AC
4 ms
6784 KiB
hand_02.txt
AC
4 ms
6852 KiB
hand_03.txt
AC
4 ms
6804 KiB
hand_04.txt
AC
4 ms
6708 KiB
hand_05.txt
AC
4 ms
6948 KiB
hand_06.txt
AC
4 ms
6828 KiB
hand_07.txt
AC
4 ms
6832 KiB
hand_08.txt
AC
4 ms
6772 KiB
hand_09.txt
AC
4 ms
6964 KiB
hand_10.txt
AC
4 ms
6776 KiB
random_00.txt
AC
4 ms
6796 KiB
random_01.txt
AC
4 ms
6800 KiB
random_02.txt
AC
4 ms
6800 KiB
random_03.txt
AC
4 ms
6788 KiB
random_04.txt
AC
4 ms
6836 KiB
random_05.txt
AC
4 ms
6840 KiB
random_06.txt
AC
4 ms
6804 KiB
random_07.txt
AC
4 ms
6968 KiB
random_08.txt
AC
4 ms
6796 KiB
random_09.txt
AC
4 ms
6796 KiB
random_10.txt
AC
4 ms
6804 KiB
random_11.txt
AC
4 ms
6804 KiB
random_12.txt
AC
4 ms
6972 KiB
random_13.txt
AC
4 ms
6796 KiB
random_14.txt
AC
4 ms
6964 KiB