### 問題文

すぬけ君への贈り物の候補は M 個あり、 それぞれの価値は B_1, B_2, \ldots,B_M です。

### 制約

• 1\leq N,M\leq 2\times 10^5
• 1\leq A_i,B_i\leq 10^{18}
• 0\leq D \leq 10^{18}
• 入力はすべて整数

### 入力

N M D
A_1 A_2 \ldots A_N
B_1 B_2 \ldots B_M


### 入力例 1

2 3 2
3 10
2 5 15


### 出力例 1

8


よって、3+5=8 を出力します。

### 入力例 2

3 3 0
1 3 3
6 2 7


### 出力例 2

-1


### 入力例 3

1 1 1000000000000000000
1000000000000000000
1000000000000000000


### 出力例 3

2000000000000000000


### 入力例 4

8 6 1
2 5 6 5 2 1 7 9
7 2 5 5 2 4


### 出力例 4

14


Score : 400 points

### Problem Statement

Takahashi has decided to give one gift to Aoki and one gift to Snuke.
There are N candidates of gifts for Aoki, and their values are A_1, A_2, \ldots,A_N.
There are M candidates of gifts for Snuke, and their values are B_1, B_2, \ldots,B_M.

Takahashi wants to choose gifts so that the difference in values of the two gifts is at most D.

Determine if he can choose such a pair of gifts. If he can, print the maximum sum of values of the chosen gifts.

### Constraints

• 1\leq N,M\leq 2\times 10^5
• 1\leq A_i,B_i\leq 10^{18}
• 0\leq D \leq 10^{18}
• All values in the input are integers.

### Input

The input is given from Standard Input in the following format:

N M D
A_1 A_2 \ldots A_N
B_1 B_2 \ldots B_M


### Output

If he can choose gifts to satisfy the condition, print the maximum sum of values of the chosen gifts. If he cannot satisfy the condition, print -1.

### Sample Input 1

2 3 2
3 10
2 5 15


### Sample Output 1

8


The difference of values of the two gifts should be at most 2.
If he gives a gift with value 3 to Aoki and another with value 5 to Snuke, the condition is satisfied, achieving the maximum possible sum of values.
Thus, 3+5=8 should be printed.

### Sample Input 2

3 3 0
1 3 3
6 2 7


### Sample Output 2

-1


He cannot choose gifts to satisfy the condition. Note that the candidates of gifts for a person may contain multiple gifts with the same value.

### Sample Input 3

1 1 1000000000000000000
1000000000000000000
1000000000000000000


### Sample Output 3

2000000000000000000


Note that the answer may not fit into a 32-bit integer type.

### Sample Input 4

8 6 1
2 5 6 5 2 1 7 9
7 2 5 5 2 4


### Sample Output 4

14