D - I Hate Non-integer Number 解説 /

実行時間制限: 2.5 sec / メモリ制限: 1024 MB

配点 : 400

問題文

項数が N の正整数列 A=(a_1,\ldots,a_N) が与えられます。
A の項を 1 個以上選ぶ方法は 2^N-1 通りありますが、そのうち選んだ項の平均値が整数であるものが何通りかを 998244353 で割った余りを求めてください。

制約

  • 1 \leq N \leq 100
  • 1 \leq a_i \leq 10^9
  • 入力はすべて整数

入力

入力は以下の形式で標準入力から与えられる。

N
a_1 \ldots a_N

出力

答えを出力せよ。


入力例 1

3
2 6 2

出力例 1

6

A の項を選ぶ方法それぞれに対する平均値は以下のようになります。

  • a_1 のみを選んだ場合、平均値は \frac{a_1}{1}=\frac{2}{1} = 2 であり、整数である。

  • a_2 のみを選んだ場合、平均値は \frac{a_2}{1}=\frac{6}{1} = 6 であり、整数である。

  • a_3 のみを選んだ場合、平均値は \frac{a_3}{1}=\frac{2}{1} = 2 であり、整数である。

  • a_1a_2 を選んだ場合、平均値は \frac{a_1+a_2}{2}=\frac{2+6}{2} = 4 であり、整数である。

  • a_1a_3 を選んだ場合、平均値は \frac{a_1+a_3}{2}=\frac{2+2}{2} = 2 であり、整数である。

  • a_2a_3 を選んだ場合、平均値は \frac{a_2+a_3}{2}=\frac{6+2}{2} = 4 であり、整数である。

  • a_1a_2a_3 を選んだ場合、平均値は \frac{a_1+a_2+a_3}{3}=\frac{2+6+2}{3} = \frac{10}{3} であり、整数ではない。

以上より、6 通りの選び方が条件を満たします。


入力例 2

5
5 5 5 5 5

出力例 2

31

どのように A の項を 1 個以上選んでも平均値が 5 になります。

Score : 400 points

Problem Statement

You are given a sequence of positive integers A=(a_1,\ldots,a_N) of length N.
There are (2^N-1) ways to choose one or more terms of A. How many of them have an integer-valued average? Find the count modulo 998244353.

Constraints

  • 1 \leq N \leq 100
  • 1 \leq a_i \leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
a_1 \ldots a_N

Output

Print the answer.


Sample Input 1

3
2 6 2

Sample Output 1

6

For each way to choose terms of A, the average is obtained as follows:

  • If just a_1 is chosen, the average is \frac{a_1}{1}=\frac{2}{1} = 2, which is an integer.

  • If just a_2 is chosen, the average is \frac{a_2}{1}=\frac{6}{1} = 6, which is an integer.

  • If just a_3 is chosen, the average is \frac{a_3}{1}=\frac{2}{1} = 2, which is an integer.

  • If a_1 and a_2 are chosen, the average is \frac{a_1+a_2}{2}=\frac{2+6}{2} = 4, which is an integer.

  • If a_1 and a_3 are chosen, the average is \frac{a_1+a_3}{2}=\frac{2+2}{2} = 2, which is an integer.

  • If a_2 and a_3 are chosen, the average is \frac{a_2+a_3}{2}=\frac{6+2}{2} = 4, which is an integer.

  • If a_1, a_2, and a_3 are chosen, the average is \frac{a_1+a_2+a_3}{3}=\frac{2+6+2}{3} = \frac{10}{3}, which is not an integer.

Therefore, 6 ways satisfy the condition.


Sample Input 2

5
5 5 5 5 5

Sample Output 2

31

Regardless of the choice of one or more terms of A, the average equals 5.