実行時間制限: 2 sec / メモリ制限: 1024 MB
配点 : 100 点
問題文
AtCoder で定期的に開催されている、国際的な権威があるコンテストである AtCoder Grand Contest (以下、AGC) は今までに 54 回開催されてきました。
みなさんがちょうど参加している 230 回目の ABC である ABC230
と同様に、 当初は N 回目の AGC のコンテスト名には N を 3 桁になるようにゼロ埋めした数が割り振られていました。( 1 回目の AGC は AGC001
, 2 回目の AGC は AGC002
, ...)
ところが、最新の 54 回目の AGC のコンテスト名は AGC055
で、回数より 1 大きい数が割り振られています。これは、AGC042
が社会情勢の影響で中止されて欠番となったため、42 回目以降に開催されたコンテストでは開催された回数より 1 大きい数が割り振られているからです。(入出力例にある説明も参考にしてください。)
さて、ここで問題です。整数 N が与えられるので、N 回目に開催された AGC のコンテスト名を AGCXXX
の形式で出力してください。ここで、XXX
にはゼロ埋めがなされた 3 桁の数が入ります。
制約
- 1 \leq N \leq 54
- N は整数である。
入力
入力は以下の形式で標準入力から与えられる。
N
出力
N 回目に開催された AGC のコンテスト名を所定の形式で出力せよ。
入力例 1
42
出力例 1
AGC043
問題文にある通り、 42 回目以降の AGC には回数より 1 大きい数が割り振られています。
よって 42 回目の AGC のコンテスト名は AGC043
になります。
入力例 2
19
出力例 2
AGC019
41 回目以前の AGC は回数と同じ数が割り振られています。
よって AGC019
が答えとなります。
入力例 3
1
出力例 3
AGC001
問題文にある通り、 1 回目の AGC のコンテスト名は AGC001
です。
数が 3 桁になるようにゼロ埋めを行う必要があるのに注意してください。
入力例 4
50
出力例 4
AGC051
Score : 100 points
Problem Statement
AtCoder Grand Contest (AGC), a regularly held contest with a world authority, has been held 54 times.
Just like the 230-th ABC ― the one you are in now ― is called ABC230
, the N-th AGC is initially named with a zero-padded 3-digit number N. (The 1-st AGC is AGC001
, the 2-nd AGC is AGC002
, ...)
However, the latest 54-th AGC is called AGC055
, where the number is one greater than 54. Because AGC042
is canceled and missing due to the social situation, the 42-th and subsequent contests are assigned numbers that are one greater than the numbers of contests held. (See also the explanations at Sample Inputs and Outputs.)
Here is the problem: given an integer N, print the name of the N-th AGC in the format AGCXXX
, where XXX
is the zero-padded 3-digit number.
Constraints
- 1 \leq N \leq 54
- N is an integer.
Input
Input is given from Standard Input in the following format:
N
Output
Print the name of the N-th AGC in the specified format.
Sample Input 1
42
Sample Output 1
AGC043
As explained in Problem Statement, the 42-th and subsequent AGCs are assigned numbers that are one greater than the numbers of contests.
Thus, the 42-th AGC is named AGC043
.
Sample Input 2
19
Sample Output 2
AGC019
The 41-th and preceding AGCs are assigned numbers that are equal to the numbers of contests.
Thus, the answer is AGC019
.
Sample Input 3
1
Sample Output 3
AGC001
As mentioned in Problem Statement, the 1-st AGC is named AGC001
.
Be sure to pad the number with zeros into a 3-digit number.
Sample Input 4
50
Sample Output 4
AGC051