Time Limit: 2 sec / Memory Limit: 1024 MB
配点 : 200 点
問題文
縦 H 行、横 W 列のマス目があり、各マスには 1 つの整数が書かれています。 上から i 行目、左から j 列目のマスに書かれている整数は A_{i, j} です。
マス目が下記の条件を満たすかどうかを判定してください。
1 \leq i_1 < i_2 \leq H および 1 \leq j_1 < j_2 \leq W を満たすすべての整数の組 (i_1, i_2, j_1, j_2) について、A_{i_1, j_1} + A_{i_2, j_2} \leq A_{i_2, j_1} + A_{i_1, j_2} が成り立つ。
制約
- 2 \leq H, W \leq 50
- 1 \leq A_{i, j} \leq 10^9
- 入力はすべて整数
入力
入力は以下の形式で標準入力から与えられる。
H W A_{1, 1} A_{1, 2} \cdots A_{1, W} A_{2, 1} A_{2, 2} \cdots A_{2, W} \vdots A_{H, 1} A_{H, 2} \cdots A_{H, W}
出力
マス目が問題文中の条件を満たす場合は Yes
と出力し、条件を満たさない場合は No
と出力せよ。
入力例 1
3 3 2 1 4 3 1 3 6 4 1
出力例 1
Yes
1 \leq i_1 < i_2 \leq H および 1 \leq j_1 < j_2 \leq W を満たす整数の組 (i_1, i_2, j_1, j_2) は 9 個存在し、それらすべてについて A_{i_1, j_1} + A_{i_2, j_2} \leq A_{i_2, j_1} + A_{i_1, j_2} が成り立ちます。例えば、
- (i_1, i_2, j_1, j_2) = (1, 2, 1, 2) について、A_{i_1, j_1} + A_{i_2, j_2} = 2 + 1 \leq 3 + 1 = A_{i_2, j_1} + A_{i_1, j_2}
- (i_1, i_2, j_1, j_2) = (1, 2, 1, 3) について、A_{i_1, j_1} + A_{i_2, j_2} = 2 + 3 \leq 3 + 4 = A_{i_2, j_1} + A_{i_1, j_2}
- (i_1, i_2, j_1, j_2) = (1, 2, 2, 3) について、A_{i_1, j_1} + A_{i_2, j_2} = 1 + 3 \leq 1 + 4 = A_{i_2, j_1} + A_{i_1, j_2}
- (i_1, i_2, j_1, j_2) = (1, 3, 1, 2) について、A_{i_1, j_1} + A_{i_2, j_2} = 2 + 4 \leq 6 + 1 = A_{i_2, j_1} + A_{i_1, j_2}
- (i_1, i_2, j_1, j_2) = (1, 3, 1, 3) について、A_{i_1, j_1} + A_{i_2, j_2} = 2 + 1 \leq 6 + 4 = A_{i_2, j_1} + A_{i_1, j_2}
が成り立ちます。残りの (i_1, i_2, j_1, j_2) = (1, 3, 2, 3), (2, 3, 1, 2), (2, 3, 1, 3), (2, 3, 2, 3) についても同様に確認できます。
よって、Yes
を出力します。
入力例 2
2 4 4 3 2 1 5 6 7 8
出力例 2
No
問題文中の条件を満たさないので、No
を出力します。
例えば、(i_1, i_2, j_1, j_2) = (1, 2, 1, 4) について、A_{i_1, j_1} + A_{i_2, j_2} = 4 + 8 > 5 + 1 = A_{i_2, j_1} + A_{i_1, j_2} です。
Score : 200 points
Problem Statement
We have a grid with H horizontal rows and W vertical columns, where each square contains an integer. The integer written on the square at the i-th row from the top and j-th column from the left is A_{i, j}.
Determine whether the grid satisfies the condition below.
A_{i_1, j_1} + A_{i_2, j_2} \leq A_{i_2, j_1} + A_{i_1, j_2} holds for every quadruple of integers (i_1, i_2, j_1, j_2) such that 1 \leq i_1 < i_2 \leq H and 1 \leq j_1 < j_2 \leq W.
Constraints
- 2 \leq H, W \leq 50
- 1 \leq A_{i, j} \leq 10^9
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
H W A_{1, 1} A_{1, 2} \cdots A_{1, W} A_{2, 1} A_{2, 2} \cdots A_{2, W} \vdots A_{H, 1} A_{H, 2} \cdots A_{H, W}
Output
If the grid satisfies the condition in the Problem Statement, print Yes
; otherwise, print No
.
Sample Input 1
3 3 2 1 4 3 1 3 6 4 1
Sample Output 1
Yes
There are nine quadruples of integers (i_1, i_2, j_1, j_2) such that 1 \leq i_1 < i_2 \leq H and 1 \leq j_1 < j_2 \leq W. For all of them, A_{i_1, j_1} + A_{i_2, j_2} \leq A_{i_2, j_1} + A_{i_1, j_2} holds. Some examples follow.
- For (i_1, i_2, j_1, j_2) = (1, 2, 1, 2), we have A_{i_1, j_1} + A_{i_2, j_2} = 2 + 1 \leq 3 + 1 = A_{i_2, j_1} + A_{i_1, j_2}.
- For (i_1, i_2, j_1, j_2) = (1, 2, 1, 3), we have A_{i_1, j_1} + A_{i_2, j_2} = 2 + 3 \leq 3 + 4 = A_{i_2, j_1} + A_{i_1, j_2}.
- For (i_1, i_2, j_1, j_2) = (1, 2, 2, 3), we have A_{i_1, j_1} + A_{i_2, j_2} = 1 + 3 \leq 1 + 4 = A_{i_2, j_1} + A_{i_1, j_2}.
- For (i_1, i_2, j_1, j_2) = (1, 3, 1, 2), we have A_{i_1, j_1} + A_{i_2, j_2} = 2 + 4 \leq 6 + 1 = A_{i_2, j_1} + A_{i_1, j_2}.
- For (i_1, i_2, j_1, j_2) = (1, 3, 1, 3), we have A_{i_1, j_1} + A_{i_2, j_2} = 2 + 1 \leq 6 + 4 = A_{i_2, j_1} + A_{i_1, j_2}.
We can also see that the property holds for the other quadruples: (i_1, i_2, j_1, j_2) = (1, 3, 2, 3), (2, 3, 1, 2), (2, 3, 1, 3), (2, 3, 2, 3).
Thus, we should print Yes
.
Sample Input 2
2 4 4 3 2 1 5 6 7 8
Sample Output 2
No
We should print No
because the condition is not satisfied.
This is because, for example, we have A_{i_1, j_1} + A_{i_2, j_2} = 4 + 8 > 5 + 1 = A_{i_2, j_1} + A_{i_1, j_2} for (i_1, i_2, j_1, j_2) = (1, 2, 1, 4).