Submission #35374254


Source Code Expand

#include <bits/stdc++.h>
using namespace std;

#ifdef _RUTHEN
#include <debug.hpp>
#else
#define show(...) true
#endif

using ll = long long;
#define rep(i, n) for (int i = 0; i < (n); i++)
template <class T> using V = vector<T>;

// #include "src/data_structure/matrix.hpp"

template <class Monoid> struct segment_tree {
   public:
    using S = typename Monoid::value_type;
    segment_tree() : segment_tree(0) {}
    segment_tree(int n) : segment_tree(std::vector<S>(n, Monoid::e())) {}
    segment_tree(const std::vector<S>& v) : _n((int)v.size()) {
        log = 0;
        while ((1U << log) < (unsigned int)(_n)) log++;
        size = 1 << log;
        d = std::vector<S>(size << 1, Monoid::e());
        for (int i = 0; i < _n; i++) d[i + size] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, const S& x) {
        assert(0 <= p and p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    void chset(int p, const S& x) {
        assert(0 <= p and p < _n);
        p += size;
        d[p] = Monoid::op(d[p], x);
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S operator[](int p) const {
        assert(0 <= p and p < _n);
        return d[p + size];
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) const {
        assert(0 <= l and l <= r and r <= _n);
        S sml = Monoid::e(), smr = Monoid::e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = Monoid::op(sml, d[l++]);
            if (r & 1) smr = Monoid::op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return Monoid::op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <class F> int max_right(int l, F& f) const {
        assert(0 <= l and l <= _n);
        assert(f(Monoid::e()));
        if (l == _n) return _n;
        l += size;
        S sm = Monoid::e();
        do {
            while ((l & 1) == 0) l >>= 1;
            if (!f(Monoid::op(sm, d[l]))) {
                while (l < size) {
                    l <<= 1;
                    if (f(Monoid::op(sm, d[l]))) {
                        sm = Monoid::op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = Monoid::op(sm, d[l]);
            l++;
        } while ((l & -l) != l);  // 2べきまたは0のときfalse
        return _n;
    }

    template <class F> int min_left(int r, F& f) const {
        assert(0 <= r and r <= _n);
        assert(f(Monoid::e()));
        if (r == 0) return 0;
        r += size;
        S sm = Monoid::e();
        do {
            r--;
            while (r > 1 and (r & 1)) r >>= 1;
            if (!f(Monoid::op(d[r], sm))) {
                while (r < size) {
                    r = (r << 1) | 1;
                    if (f(Monoid::op(d[r], sm))) {
                        sm = Monoid::op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = Monoid::op(d[r], sm);
        } while ((r & -r) != r);  // 2べきまたは0のときfalse
        return 0;
    }

   private:
    int _n, log, size;
    std::vector<S> d;
    inline void update(int k) { d[k] = Monoid::op(d[k << 1], d[(k << 1) | 1]); }
};

/**
 * @brief Segment Tree (セグメント木)
 * @docs docs/data_structure/segment_tree.md
 */

template <class T, size_t n, size_t m = n> struct static_matrix {
    std::array<std::array<T, m>, n> A;

    static_matrix() : A{{}} {}

    static_matrix(T val) : A{{}} {
        for (int i = 0; i < (int)n; i++)
            for (int j = 0; j < (int)m; j++) A[i][j] = val;
    }

    size_t size() const { return n; }

    int row() const { return (int)n; }

    int col() const { return (int)m; }

    inline const std::array<T, m> &operator[](int i) const { return A[i]; }  // read

    inline std::array<T, m> &operator[](int i) { return A[i]; }  // write

    static static_matrix E() {
        assert(n == m);
        static_matrix ret;
        for (int i = 0; i < (int)n; i++) ret[i][i] = T(1);
        return ret;
    }

    static_matrix &operator+=(const static_matrix &B) {
        int N = row(), M = col();
        assert(N == B.row() && M == B.col());
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < M; j++) {
                (*this)[i][j] += B[i][j];
            }
        }
        return (*this);
    }

    static_matrix &operator-=(const static_matrix &B) {
        int N = row(), M = col();
        assert(N == B.row() && M == B.col());
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < M; j++) {
                (*this)[i][j] -= B[i][j];
            }
        }
        return (*this);
    }

    static_matrix &operator*=(const static_matrix &B) {
        int N = row(), M = B.col(), L = B.row();
        assert(L == col());
        static_matrix C;
        for (int i = 0; i < N; i++) {
            for (int k = 0; k < L; k++) {
                for (int j = 0; j < M; j++) {
                    C[i][j] += (*this)[i][k] * B[k][j];
                }
            }
        }
        A.swap(C.A);
        return (*this);
    }

    static_matrix pow(long long k) {
        assert(row() == col());
        static_matrix B = static_matrix::E(), X = (*this);
        while (k) {
            if (k & 1) B *= X;
            X *= X;
            k >>= 1;
        }
        A.swap(B.A);
        return (*this);
    }

    static_matrix operator+(const static_matrix &B) { return ((*this) += B); }

    static_matrix operator-(const static_matrix &B) { return ((*this) -= B); }

    static_matrix operator*(const static_matrix &B) { return ((*this) *= B); }

    friend std::ostream &operator<<(std::ostream &os, static_matrix &A) {
        int N = A.row(), M = A.col();
        for (int i = 0; i < N; i++) {
            os << '[';
            for (int j = 0; j < M; j++) os << A[i][j] << " \n"[j == M - 1];
        }
        return (os);
    }

    static_matrix &operator+=(const T &k) {
        int N = row(), M = col();
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++) (*this)[i][j] += k;
        return (*this);
    }

    static_matrix &operator-=(const T &k) {
        int N = row(), M = col();
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++) (*this)[i][j] -= k;
        return (*this);
    }

    static_matrix &operator*=(const T &k) {
        int N = row(), M = col();
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++) (*this)[i][j] *= k;
        return (*this);
    }

    static_matrix &operator/=(const T &k) {
        int N = row(), M = col();
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++) (*this)[i][j] /= k;
        return (*this);
    }

    static_matrix operator+(const T &k) { return ((*this) += k); }

    static_matrix operator-(const T &k) { return ((*this) -= k); }

    static_matrix operator*(const T &k) { return ((*this) *= k); }

    static_matrix operator/(const T &k) { return ((*this) /= k); }
};

/**
 * @brief Static Matrix (行列, サイズ固定)
 */

template <class S> struct monoid {
    using value_type = S;
    static const S op(S a, S b) { return b * a; }
    static const S e() { return S::E(); }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int N;
    cin >> N;
    V<ll> X(N), Y(N);
    rep(i, N) cin >> X[i] >> Y[i];
    int M;
    cin >> M;
    V<static_matrix<ll, 3>> A(M);
    rep(i, M) {
        int t;
        cin >> t;
        if (t == 1) {
            A[i][0][1] = 1;
            A[i][1][0] = -1;
            A[i][2][2] = 1;
        } else if (t == 2) {
            A[i][0][1] = -1;
            A[i][1][0] = 1;
            A[i][2][2] = 1;
        } else if (t == 3) {
            int p;
            cin >> p;
            A[i][0][0] = -1;
            A[i][1][1] = 1;
            A[i][2][2] = 1;
            A[i][0][2] = 2 * p;
        } else {
            int p;
            cin >> p;
            A[i][0][0] = 1;
            A[i][1][1] = -1;
            A[i][2][2] = 1;
            A[i][1][2] = 2 * p;
        }
    }
    segment_tree<monoid<static_matrix<ll, 3>>> seg(A);
    int Q;
    cin >> Q;
    while (Q--) {
        int r, i;
        cin >> r >> i;
        i--;
        auto af = seg.prod(0, r);
        ll ansx = af[0][0] * X[i] + af[0][1] * Y[i] + af[0][2];
        ll ansy = af[1][0] * X[i] + af[1][1] * Y[i] + af[1][2];
        cout << ansx << ' ' << ansy << '\n';
    }
    return 0;
}

Submission Info

Submission Time
Task E - Rotate and Flip
User ruthen71
Language C++ (GCC 9.2.1)
Score 500
Code Size 9022 Byte
Status AC
Exec Time 262 ms
Memory 59792 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 500 / 500
Status
AC × 2
AC × 28
Set Name Test Cases
Sample sample_01.txt, sample_02.txt
All max_01.txt, max_02.txt, max_03.txt, random_01.txt, random_02.txt, random_03.txt, random_04.txt, random_05.txt, random_06.txt, random_07.txt, random_08.txt, random_09.txt, random_10.txt, random_11.txt, random_12.txt, random_13.txt, random_14.txt, random_15.txt, random_16.txt, random_17.txt, random_18.txt, random_19.txt, random_20.txt, random_21.txt, random_22.txt, random_23.txt, sample_01.txt, sample_02.txt
Case Name Status Exec Time Memory
max_01.txt AC 215 ms 59788 KiB
max_02.txt AC 184 ms 59716 KiB
max_03.txt AC 73 ms 54036 KiB
random_01.txt AC 2 ms 3624 KiB
random_02.txt AC 2 ms 3588 KiB
random_03.txt AC 2 ms 3524 KiB
random_04.txt AC 2 ms 3524 KiB
random_05.txt AC 2 ms 3548 KiB
random_06.txt AC 2 ms 3620 KiB
random_07.txt AC 2 ms 3624 KiB
random_08.txt AC 2 ms 3616 KiB
random_09.txt AC 2 ms 3624 KiB
random_10.txt AC 1 ms 3628 KiB
random_11.txt AC 2 ms 3500 KiB
random_12.txt AC 3 ms 3488 KiB
random_13.txt AC 2 ms 3636 KiB
random_14.txt AC 2 ms 3524 KiB
random_15.txt AC 1 ms 3592 KiB
random_16.txt AC 2 ms 3500 KiB
random_17.txt AC 3 ms 3452 KiB
random_18.txt AC 2 ms 3496 KiB
random_19.txt AC 2 ms 3588 KiB
random_20.txt AC 2 ms 3572 KiB
random_21.txt AC 127 ms 30284 KiB
random_22.txt AC 262 ms 59792 KiB
random_23.txt AC 254 ms 59792 KiB
sample_01.txt AC 9 ms 3588 KiB
sample_02.txt AC 2 ms 3608 KiB