Contest Duration: - (local time) (100 minutes) Back to Home
D - Not Divisible /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

• i \neq j である任意の整数 j \left(1 \leq j \leq N\right) について A_iA_j で割り切れない

### 制約

• 入力は全て整数
• 1 \leq N \leq 2 \times 10^5
• 1 \leq A_i \leq 10^6

### 入力

N
A_1 A_2 \cdots A_N


### 入力例 1

5
24 11 8 3 16


### 出力例 1

3


### 入力例 2

4
5 5 5 5


### 出力例 2

0


### 入力例 3

10
33 18 45 28 8 19 89 86 2 4


### 出力例 3

5


Score : 400 points

### Problem Statement

Given is a number sequence A of length N.

Find the number of integers i \left(1 \leq i \leq N\right) with the following property:

• For every integer j \left(1 \leq j \leq N\right) such that i \neq j , A_j does not divide A_i.

### Constraints

• All values in input are integers.
• 1 \leq N \leq 2 \times 10^5
• 1 \leq A_i \leq 10^6

### Input

Input is given from Standard Input in the following format:

N
A_1 A_2 \cdots A_N


### Sample Input 1

5
24 11 8 3 16


### Sample Output 1

3


The integers with the property are 2, 3, and 4.

### Sample Input 2

4
5 5 5 5


### Sample Output 2

0


Note that there can be multiple equal numbers.

### Sample Input 3

10
33 18 45 28 8 19 89 86 2 4


### Sample Output 3

5