F - . (Single Dot) /

### 問題文

この草原上に、大きさが無視できるほど小さい 1 頭の牛がいます。牛の今いる点から南に x\ \mathrm{cm}、東に y\ \mathrm{cm} 移動した点を (x, y) と表します。牛自身のいる点は (0, 0) です。

また、草原には N 本の縦線と M 本の横線が引かれています。i 本目の縦線は点 (A_i, C_i) と点 (B_i, C_i) とを結ぶ線分、j 本目の横線は点 (D_j, E_j) と点 (D_j, F_j) とを結ぶ線分です。

### 制約

• 入力はすべて -10^9 以上 10^9 以下の整数
• 1 \leq N, M \leq 1000
• A_i < B_i\ (1 \leq i \leq N)
• E_j < F_j\ (1 \leq j \leq M)
• (0, 0) はどの与えられた線分上にも位置しない

### 入力

N M
A_1 B_1 C_1
:
A_N B_N C_N
D_1 E_1 F_1
:
D_M E_M F_M


### 出力

(この問題の制約下で、牛が動き回れる範囲の面積が有限である場合、その面積は必ず整数であることが示せる。)

### 入力例 1

5 6
1 2 0
0 1 1
0 2 2
-3 4 -1
-2 6 3
1 0 1
0 1 2
2 0 2
-1 -4 5
3 -2 4
1 2 4


### 出力例 1

13


### 入力例 2

6 1
-3 -1 -2
-3 -1 1
-2 -1 2
1 4 -2
1 4 -1
1 4 1
3 1 4


### 出力例 2

INF


Score: 600 points

### Problem Statement

There is a grass field that stretches infinitely.

In this field, there is a negligibly small cow. Let (x, y) denote the point that is x\ \mathrm{cm} south and y\ \mathrm{cm} east of the point where the cow stands now. The cow itself is standing at (0, 0).

There are also N north-south lines and M east-west lines drawn on the field. The i-th north-south line is the segment connecting the points (A_i, C_i) and (B_i, C_i), and the j-th east-west line is the segment connecting the points (D_j, E_j) and (D_j, F_j).

What is the area of the region the cow can reach when it can move around as long as it does not cross the segments (including the endpoints)? If this area is infinite, print INF instead.

### Constraints

• All values in input are integers between -10^9 and 10^9 (inclusive).
• 1 \leq N, M \leq 1000
• A_i < B_i\ (1 \leq i \leq N)
• E_j < F_j\ (1 \leq j \leq M)
• The point (0, 0) does not lie on any of the given segments.

### Input

Input is given from Standard Input in the following format:

N M
A_1 B_1 C_1
:
A_N B_N C_N
D_1 E_1 F_1
:
D_M E_M F_M


### Output

If the area of the region the cow can reach is infinite, print INF; otherwise, print an integer representing the area in \mathrm{cm^2}.

(Under the constraints, it can be proved that the area of the region is always an integer if it is not infinite.)

### Sample Input 1

5 6
1 2 0
0 1 1
0 2 2
-3 4 -1
-2 6 3
1 0 1
0 1 2
2 0 2
-1 -4 5
3 -2 4
1 2 4


### Sample Output 1

13


The area of the region the cow can reach is 13\ \mathrm{cm^2}.

### Sample Input 2

6 1
-3 -1 -2
-3 -1 1
-2 -1 2
1 4 -2
1 4 -1
1 4 1
3 1 4


### Sample Output 2

INF


The area of the region the cow can reach is infinite.