D - Floor Function /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 400

問題文

整数 A, B, N が与えられます。

N 以下の非負整数 x に対する floor(Ax/B) - A × floor(x/B) の最大値を求めてください。

ただし、floor(t) とは、実数 t 以下の最大の整数のことを表します。

制約

  • 1 ≤ A ≤ 10^{6}
  • 1 ≤ B ≤ 10^{12}
  • 1 ≤ N ≤ 10^{12}
  • 入力は全て整数

入力

入力は以下の形式で標準入力から与えられる。

A B N

出力

N 以下の非負整数 x に対する floor(Ax/B) - A × floor(x/B) の最大値を整数として出力せよ。


入力例 1

5 7 4

出力例 1

2

x=3 のとき、floor(Ax/B)-A×floor(x/B) = floor(15/7) - 5×floor(3/7) = 2 となり、これが最大です。


入力例 2

11 10 9

出力例 2

9

Score : 400 points

Problem Statement

Given are integers A, B, and N.

Find the maximum possible value of floor(Ax/B) - A × floor(x/B) for a non-negative integer x not greater than N.

Here floor(t) denotes the greatest integer not greater than the real number t.

Constraints

  • 1 ≤ A ≤ 10^{6}
  • 1 ≤ B ≤ 10^{12}
  • 1 ≤ N ≤ 10^{12}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

A B N

Output

Print the maximum possible value of floor(Ax/B) - A × floor(x/B) for a non-negative integer x not greater than N, as an integer.


Sample Input 1

5 7 4

Sample Output 1

2

When x=3, floor(Ax/B)-A×floor(x/B) = floor(15/7) - 5×floor(3/7) = 2. This is the maximum value possible.


Sample Input 2

11 10 9

Sample Output 2

9