Submission #26046042


Source Code Expand

#include <algorithm>
#include <cassert>
#include <iostream>
#include <utility>
#include <vector>

template <int M>
struct MInt {
  unsigned int val;
  MInt(): val(0) {}
  MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(int divisor) { assert(divisor == M); }
  static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
  static MInt inv(int x, bool init = false) {
    // assert(0 <= x && x < M && std::__gcd(x, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    int prev = inverse.size();
    if (init && x >= prev) {
      // "x!" and "M" must be disjoint.
      inverse.resize(x + 1);
      for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
    }
    if (x < inverse.size()) return inverse[x];
    unsigned int a = x, b = M; int u = 1, v = 0;
    while (b) {
      unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(int x) {
    static std::vector<MInt> f{1};
    int prev = f.size();
    if (x >= prev) {
      f.resize(x + 1);
      for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
    }
    return f[x];
  }
  static MInt fact_inv(int x) {
    static std::vector<MInt> finv{1};
    int prev = finv.size();
    if (x >= prev) {
      finv.resize(x + 1);
      finv[x] = inv(fact(x).val);
      for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
    }
    return finv[x];
  }
  static MInt nCk(int n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    if (n - k > k) k = n - k;
    return fact(n) * fact_inv(k) * fact_inv(n - k);
  }
  static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
  static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
  static MInt large_nCk(long long n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
    return res;
  }
  MInt pow(long long exponent) const {
    MInt tmp = *this, res = 1;
    while (exponent > 0) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
      exponent >>= 1;
    }
    return res;
  }
  MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
  MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
  MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
  MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
  bool operator==(const MInt &x) const { return val == x.val; }
  bool operator!=(const MInt &x) const { return val != x.val; }
  bool operator<(const MInt &x) const { return val < x.val; }
  bool operator<=(const MInt &x) const { return val <= x.val; }
  bool operator>(const MInt &x) const { return val > x.val; }
  bool operator>=(const MInt &x) const { return val >= x.val; }
  MInt &operator++() { if (++val == M) val = 0; return *this; }
  MInt operator++(int) { MInt res = *this; ++*this; return res; }
  MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
  MInt operator--(int) { MInt res = *this; --*this; return res; }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(val ? M - val : 0); }
  MInt operator+(const MInt &x) const { return MInt(*this) += x; }
  MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
  friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
  friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<1000000007>;

std::vector<int> mobius_mu_init(const int n) {
  std::vector<int> is_prime(n + 1, true);
  is_prime[0] = false;
  if (n >= 1) {
    is_prime[1] = false;
  }
  std::vector<int> mu(n + 1, 1);
  mu[0] = 0;
  for (int i = 2; i <= n; ++i) {
    if (is_prime[i]) {
      mu[i] = -mu[i];
      for (int j = i * 2; j <= n; j += i) {
        is_prime[j] = false;
        mu[j] = ((j / i) % i == 0 ? 0 : -mu[j]);
      }
    }
  }
  return mu;
}

int main() {
  int n, k;
  std::cin >> n >> k;
  std::vector<int> mu = mobius_mu_init(k);
  ModInt ans = 0;
  for (int g = 1; g <= k; ++g) {
    ModInt pat = 0;
    for (int mul = 1; g * mul <= k; ++mul) {
      pat += ModInt(k / (g * mul)).pow(n) * mu[mul];
    }
    ans += pat * g;
  }
  std::cout << ans << '\n';
  return 0;
}

Submission Info

Submission Time
Task E - Sum of gcd of Tuples (Hard)
User emthrm
Language C++ (GCC 9.2.1)
Score 500
Code Size 4847 Byte
Status AC
Exec Time 86 ms
Memory 3948 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 500 / 500
Status
AC × 3
AC × 24
Set Name Test Cases
Sample sample_01, sample_02, sample_03
All hand_01, hand_02, hand_03, hand_04, hand_05, hand_06, random_01, random_02, random_03, random_04, random_05, random_06, random_07, random_08, random_09, random_10, random_11, random_12, random_13, random_14, random_15, sample_01, sample_02, sample_03
Case Name Status Exec Time Memory
hand_01 AC 8 ms 3432 KiB
hand_02 AC 24 ms 3756 KiB
hand_03 AC 6 ms 3484 KiB
hand_04 AC 2 ms 3428 KiB
hand_05 AC 2 ms 3348 KiB
hand_06 AC 86 ms 3824 KiB
random_01 AC 42 ms 3824 KiB
random_02 AC 39 ms 3932 KiB
random_03 AC 32 ms 3636 KiB
random_04 AC 31 ms 3824 KiB
random_05 AC 22 ms 3540 KiB
random_06 AC 2 ms 3532 KiB
random_07 AC 2 ms 3448 KiB
random_08 AC 2 ms 3432 KiB
random_09 AC 2 ms 3484 KiB
random_10 AC 2 ms 3420 KiB
random_11 AC 39 ms 3504 KiB
random_12 AC 61 ms 3632 KiB
random_13 AC 69 ms 3608 KiB
random_14 AC 81 ms 3936 KiB
random_15 AC 71 ms 3876 KiB
sample_01 AC 2 ms 3488 KiB
sample_02 AC 2 ms 3572 KiB
sample_03 AC 86 ms 3948 KiB