Submission #26046042
Source Code Expand
#include <algorithm>
#include <cassert>
#include <iostream>
#include <utility>
#include <vector>
template <int M>
struct MInt {
unsigned int val;
MInt(): val(0) {}
MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(int divisor) { assert(divisor == M); }
static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
static MInt inv(int x, bool init = false) {
// assert(0 <= x && x < M && std::__gcd(x, M) == 1);
static std::vector<MInt> inverse{0, 1};
int prev = inverse.size();
if (init && x >= prev) {
// "x!" and "M" must be disjoint.
inverse.resize(x + 1);
for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
}
if (x < inverse.size()) return inverse[x];
unsigned int a = x, b = M; int u = 1, v = 0;
while (b) {
unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(int x) {
static std::vector<MInt> f{1};
int prev = f.size();
if (x >= prev) {
f.resize(x + 1);
for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
}
return f[x];
}
static MInt fact_inv(int x) {
static std::vector<MInt> finv{1};
int prev = finv.size();
if (x >= prev) {
finv.resize(x + 1);
finv[x] = inv(fact(x).val);
for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
}
return finv[x];
}
static MInt nCk(int n, int k) {
if (n < 0 || n < k || k < 0) return 0;
if (n - k > k) k = n - k;
return fact(n) * fact_inv(k) * fact_inv(n - k);
}
static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
static MInt large_nCk(long long n, int k) {
if (n < 0 || n < k || k < 0) return 0;
inv(k, true);
MInt res = 1;
for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
return res;
}
MInt pow(long long exponent) const {
MInt tmp = *this, res = 1;
while (exponent > 0) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
exponent >>= 1;
}
return res;
}
MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
bool operator==(const MInt &x) const { return val == x.val; }
bool operator!=(const MInt &x) const { return val != x.val; }
bool operator<(const MInt &x) const { return val < x.val; }
bool operator<=(const MInt &x) const { return val <= x.val; }
bool operator>(const MInt &x) const { return val > x.val; }
bool operator>=(const MInt &x) const { return val >= x.val; }
MInt &operator++() { if (++val == M) val = 0; return *this; }
MInt operator++(int) { MInt res = *this; ++*this; return res; }
MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
MInt operator--(int) { MInt res = *this; --*this; return res; }
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(val ? M - val : 0); }
MInt operator+(const MInt &x) const { return MInt(*this) += x; }
MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<1000000007>;
std::vector<int> mobius_mu_init(const int n) {
std::vector<int> is_prime(n + 1, true);
is_prime[0] = false;
if (n >= 1) {
is_prime[1] = false;
}
std::vector<int> mu(n + 1, 1);
mu[0] = 0;
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
mu[i] = -mu[i];
for (int j = i * 2; j <= n; j += i) {
is_prime[j] = false;
mu[j] = ((j / i) % i == 0 ? 0 : -mu[j]);
}
}
}
return mu;
}
int main() {
int n, k;
std::cin >> n >> k;
std::vector<int> mu = mobius_mu_init(k);
ModInt ans = 0;
for (int g = 1; g <= k; ++g) {
ModInt pat = 0;
for (int mul = 1; g * mul <= k; ++mul) {
pat += ModInt(k / (g * mul)).pow(n) * mu[mul];
}
ans += pat * g;
}
std::cout << ans << '\n';
return 0;
}
Submission Info
| Submission Time | |
|---|---|
| Task | E - Sum of gcd of Tuples (Hard) |
| User | emthrm |
| Language | C++ (GCC 9.2.1) |
| Score | 500 |
| Code Size | 4847 Byte |
| Status | AC |
| Exec Time | 86 ms |
| Memory | 3948 KiB |
Judge Result
| Set Name | Sample | All | ||||
|---|---|---|---|---|---|---|
| Score / Max Score | 0 / 0 | 500 / 500 | ||||
| Status |
|
|
| Set Name | Test Cases |
|---|---|
| Sample | sample_01, sample_02, sample_03 |
| All | hand_01, hand_02, hand_03, hand_04, hand_05, hand_06, random_01, random_02, random_03, random_04, random_05, random_06, random_07, random_08, random_09, random_10, random_11, random_12, random_13, random_14, random_15, sample_01, sample_02, sample_03 |
| Case Name | Status | Exec Time | Memory |
|---|---|---|---|
| hand_01 | AC | 8 ms | 3432 KiB |
| hand_02 | AC | 24 ms | 3756 KiB |
| hand_03 | AC | 6 ms | 3484 KiB |
| hand_04 | AC | 2 ms | 3428 KiB |
| hand_05 | AC | 2 ms | 3348 KiB |
| hand_06 | AC | 86 ms | 3824 KiB |
| random_01 | AC | 42 ms | 3824 KiB |
| random_02 | AC | 39 ms | 3932 KiB |
| random_03 | AC | 32 ms | 3636 KiB |
| random_04 | AC | 31 ms | 3824 KiB |
| random_05 | AC | 22 ms | 3540 KiB |
| random_06 | AC | 2 ms | 3532 KiB |
| random_07 | AC | 2 ms | 3448 KiB |
| random_08 | AC | 2 ms | 3432 KiB |
| random_09 | AC | 2 ms | 3484 KiB |
| random_10 | AC | 2 ms | 3420 KiB |
| random_11 | AC | 39 ms | 3504 KiB |
| random_12 | AC | 61 ms | 3632 KiB |
| random_13 | AC | 69 ms | 3608 KiB |
| random_14 | AC | 81 ms | 3936 KiB |
| random_15 | AC | 71 ms | 3876 KiB |
| sample_01 | AC | 2 ms | 3488 KiB |
| sample_02 | AC | 2 ms | 3572 KiB |
| sample_03 | AC | 86 ms | 3948 KiB |