E - Who Says a Pun?

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 500

問題文

長さ N の文字列 S が与えられます。

非空文字列であって、S の連続する部分文字列として重ならずに 2 回以上現れるもののうち、最長のものの長さを答えてください。

より厳密には、

  • l_1 + len \leq l_2

  • S[l_1+i] = S[l_2+i] (i = 0, 1, ..., len - 1)

を満たす整数 l_1 , l_2 ( 1 \leq l_1, l_2 \leq N - len + 1 ) が存在するような正整数 len の最大値を求めてください。そのような len が存在しないときは、0 を出力してください。

制約

  • 2 ≤ N ≤ 5 \times 10^3
  • |S| = N
  • S は英小文字から成る

入力

入力は以下の形式で標準入力から与えられる。

N
S

出力

非空文字列であって、S の連続する部分文字列として重ならずに 2 回以上現れるもののうち、最長のものの長さを出力せよ。そのような非空文字列が存在しないときは、0 を出力せよ。


入力例 1

5
ababa

出力例 1

2

条件を満たす文字列として、a, b, ab, ba が考えられます。これらの長さの最大値 2 が答えです。 abaS の連続する部分文字列として 2 度現れますが、l_1 + len \leq l_2 を満たすような l_1 , l_2 が取れないことに注意してください。


入力例 2

2
xy

出力例 2

0

条件を満たす非空文字列は存在しません。


入力例 3

13
strangeorange

出力例 3

5

Score : 500 points

Problem Statement

Given is a string S of length N.

Find the maximum length of a non-empty string that occurs twice or more in S as contiguous substrings without overlapping.

More formally, find the maximum positive integer len such that there exist integers l_1 and l_2 ( 1 \leq l_1, l_2 \leq N - len + 1 ) that satisfy the following:

  • l_1 + len \leq l_2

  • S[l_1+i] = S[l_2+i] (i = 0, 1, ..., len - 1)

If there is no such integer len, print 0.

Constraints

  • 2 \leq N \leq 5 \times 10^3
  • |S| = N
  • S consists of lowercase English letters.

Input

Input is given from Standard Input in the following format:

N
S

Output

Print the maximum length of a non-empty string that occurs twice or more in S as contiguous substrings without overlapping. If there is no such non-empty string, print 0 instead.


Sample Input 1

5
ababa

Sample Output 1

2

The strings satisfying the conditions are: a, b, ab, and ba. The maximum length among them is 2, which is the answer. Note that aba occurs twice in S as contiguous substrings, but there is no pair of integers l_1 and l_2 mentioned in the statement such that l_1 + len \leq l_2.


Sample Input 2

2
xy

Sample Output 2

0

No non-empty string satisfies the conditions.


Sample Input 3

13
strangeorange

Sample Output 3

5