Contest Duration: - (local time) (100 minutes) Back to Home
C - Remainder Minimization 2019 /

Time Limit: 2 sec / Memory Limit: 1024 MB

制約

• 入力は全て整数
• 0 \leq L < R \leq 2 \times 10^9

入力

L R


入力例 1

2020 2040


出力例 1

2


(i, j) = (2020, 2021) とすると、(i \times j) \text{ mod } 2019 = 2 となります。

入力例 2

4 5


出力例 2

20


Score : 300 points

Problem Statement

You are given two non-negative integers L and R. We will choose two integers i and j such that L \leq i < j \leq R. Find the minimum possible value of (i \times j) \text{ mod } 2019.

Constraints

• All values in input are integers.
• 0 \leq L < R \leq 2 \times 10^9

Input

Input is given from Standard Input in the following format:

L R


Output

Print the minimum possible value of (i \times j) \text{ mod } 2019 when i and j are chosen under the given condition.

Sample Input 1

2020 2040


Sample Output 1

2


When (i, j) = (2020, 2021), (i \times j) \text{ mod } 2019 = 2.

Sample Input 2

4 5


Sample Output 2

20


We have only one choice: (i, j) = (4, 5).