Contest Duration: - (local time) (100 minutes) Back to Home

Time Limit: 2 sec / Memory Limit: 1024 MB

### 制約

• 1\leq N\leq 10^9
• 1 2\leq K\leq 100 (21:33 修正)
• N,K は整数である

### 入力

N K


### 入力例 1

3 2


### 出力例 1

5


(1,1),(1,2),(1,3),(2,1),(3,1) が条件を満たします。

### 入力例 2

10 3


### 出力例 2

147


### 入力例 3

314159265 35


### 出力例 3

457397712


Score : 600 points

### Problem Statement

Find the number of sequences of length K consisting of positive integers such that the product of any two adjacent elements is at most N, modulo 10^9+7.

### Constraints

• 1\leq N\leq 10^9
• 1 2\leq K\leq 100 (fixed at 21:33 JST)
• N and K are integers.

### Input

Input is given from Standard Input in the following format:

N K


### Output

Print the number of sequences, modulo 10^9+7.

### Sample Input 1

3 2


### Sample Output 1

5


(1,1), (1,2), (1,3), (2,1), and (3,1) satisfy the condition.

### Sample Input 2

10 3


### Sample Output 2

147


### Sample Input 3

314159265 35


### Sample Output 3

457397712