F - Must Be Rectangular!

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 600

問題文

2 次元平面上の N 個の点があり、i 番目の点の座標は (x_i, y_i) です。

以下の操作を行える限り繰り返します。

  • 座標 (a, b), (a, d), (c, b), (c, d) のうちちょうど 3 箇所に点が存在するような整数 a, b, c, d (a \neq c, b \neq d) を選び、残りの 1 箇所に点を追加する。

この操作は有限回しか行なうことができないことが証明できます。操作回数の最大値を求めてください。

制約

  • 1 \leq N \leq 10^5
  • 1 \leq x_i, y_i \leq 10^5
  • x_i \neq x_j または y_i \neq y_j (i \neq j)
  • 入力は全て整数である

入力

入力は以下の形式で標準入力から与えられる。

N
x_1 y_1
:
x_N y_N

出力

操作回数の最大値を出力せよ。


入力例 1

3
1 1
5 1
5 5

出力例 1

1

a = 1, b = 1, c = 5, d = 5 とすると (1, 5) に点を追加することができます。これ以上操作を行うことはできないので、操作回数の最大値は 1 回です。


入力例 2

2
10 10
20 20

出力例 2

0

2 点しか点がないので操作を 1 回も行うことができません。


入力例 3

9
1 1
2 1
3 1
4 1
5 1
1 2
1 3
1 4
1 5

出力例 3

16

a = 1, b = 1, c = i, d = j (2 \leq i,j \leq 5) の全てに対して操作を行うことができ、それ以上操作を行うことはできないので、操作回数の最大値は 16 回です。

Score : 600 points

Problem Statement

There are N dots in a two-dimensional plane. The coordinates of the i-th dot are (x_i, y_i).

We will repeat the following operation as long as possible:

  • Choose four integers a, b, c, d (a \neq c, b \neq d) such that there are dots at exactly three of the positions (a, b), (a, d), (c, b) and (c, d), and add a dot at the remaining position.

We can prove that we can only do this operation a finite number of times. Find the maximum number of times we can do the operation.

Constraints

  • 1 \leq N \leq 10^5
  • 1 \leq x_i, y_i \leq 10^5
  • If i \neq j, x_i \neq x_j or y_i \neq y_j.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
x_1 y_1
:
x_N y_N

Output

Print the maximum number of times we can do the operation.


Sample Input 1

3
1 1
5 1
5 5

Sample Output 1

1

By choosing a = 1, b = 1, c = 5, d = 5, we can add a dot at (1, 5). We cannot do the operation any more, so the maximum number of operations is 1.


Sample Input 2

2
10 10
20 20

Sample Output 2

0

There are only two dots, so we cannot do the operation at all.


Sample Input 3

9
1 1
2 1
3 1
4 1
5 1
1 2
1 3
1 4
1 5

Sample Output 3

16

We can do the operation for all choices of the form a = 1, b = 1, c = i, d = j (2 \leq i,j \leq 5), and no more. Thus, the maximum number of operations is 16.