B - Collatz Problem

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 200

問題文

数列 a=\{a_1,a_2,a_3,......\} は、以下のようにして定まります。

  • 初項 s は入力で与えられる。

  • 関数 f(n) を以下のように定める: n が偶数なら f(n) = n/2n が奇数なら f(n) = 3n+1

  • i = 1 のとき a_i = si > 1 のとき a_i = f(a_{i-1}) である。

このとき、次の条件を満たす最小の整数 m を求めてください。

  • a_m = a_n (m > n) を満たす整数 n が存在する。

制約

  • 1 \leqq s \leqq 100
  • 入力はすべて整数である。
  • a のすべての要素、および条件を満たす最小の m1000000 以下となることが保証される。

入力

入力は以下の形式で標準入力から与えられます。

s

出力

条件を満たす最小の整数 m を出力してください。


入力例 1

8

出力例 1

5

a=\{8,4,2,1,4,2,1,4,2,1,......\} です。a_5=a_2 なので、答えは 5 です。


入力例 2

7

出力例 2

18

a=\{7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,4,2,1,......\} です。


入力例 3

54

出力例 3

114

Score : 200 points

Problem Statement

A sequence a=\{a_1,a_2,a_3,......\} is determined as follows:

  • The first term s is given as input.

  • Let f(n) be the following function: f(n) = n/2 if n is even, and f(n) = 3n+1 if n is odd.

  • a_i = s when i = 1, and a_i = f(a_{i-1}) when i > 1.

Find the minimum integer m that satisfies the following condition:

  • There exists an integer n such that a_m = a_n (m > n).

Constraints

  • 1 \leq s \leq 100
  • All values in input are integers.
  • It is guaranteed that all elements in a and the minimum m that satisfies the condition are at most 1000000.

Input

Input is given from Standard Input in the following format:

s

Output

Print the minimum integer m that satisfies the condition.


Sample Input 1

8

Sample Output 1

5

a=\{8,4,2,1,4,2,1,4,2,1,......\}. As a_5=a_2, the answer is 5.


Sample Input 2

7

Sample Output 2

18

a=\{7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,4,2,1,......\}.


Sample Input 3

54

Sample Output 3

114