Contest Duration: - (local time) (120 minutes)
E - Odd Subrectangles /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

NM 列のマス目があります。 各マスには 0 または 1 の整数が書かれていて、上から i 行目、左から j 列目に書かれている整数は a_{ij} です。

• A に属する行と B に属する列の交わりに属する |A||B| 個のマスに書かれた整数の総和が奇数である

### 制約

• 1 \leq N,M \leq 300
• 0 \leq a_{i,j} \leq 1(1\leq i\leq N,1\leq j\leq M)
• 入力はすべて整数である

### 入力

N M
a_{11} ... a_{1M}
:
a_{N1} ... a_{NM}


### 入力例 1

2 2
0 1
1 0


### 出力例 1

6


### 入力例 2

2 3
0 0 0
0 1 0


### 出力例 2

8


Score : 800 points

### Problem Statement

There is a square grid with N rows and M columns. Each square contains an integer: 0 or 1. The square at the i-th row from the top and the j-th column from the left contains a_{ij}.

Among the 2^{N+M} possible pairs of a subset A of the rows and a subset B of the columns, find the number of the pairs that satisfy the following condition, modulo 998244353:

• The sum of the |A||B| numbers contained in the intersection of the rows belonging to A and the columns belonging to B, is odd.

### Constraints

• 1 \leq N,M \leq 300
• 0 \leq a_{i,j} \leq 1(1\leq i\leq N,1\leq j\leq M)
• All values in input are integers.

### Input

Input is given from Standard Input in the following format:

N M
a_{11} ... a_{1M}
:
a_{N1} ... a_{NM}


### Output

Print the number of the pairs of a subset of the rows and a subset of the columns that satisfy the condition, modulo 998244353.

### Sample Input 1

2 2
0 1
1 0


### Sample Output 1

6


For example, if A consists of the first row and B consists of both columns, the sum of the numbers contained in the intersection is 0+1=1.

### Sample Input 2

2 3
0 0 0
0 1 0


### Sample Output 2

8