D - Three Colors

Time Limit: 3 sec / Memory Limit: 1024 MB

配点 : 600

問題文

N 個の整数が与えられます。i 個目の整数は a_i です。 与えられたすべての整数を赤、緑、青の 3 色のいずれかで塗り、以下の条件を満たすようにする方法の個数を 998244353 で割ったあまりを求めてください。

  • 赤、緑、青で塗られた整数の総和をそれぞれ R,G,B とする。三辺の長さがそれぞれ R,G,B であるような正の面積の三角形が存在する。

制約

  • 3 \leq N \leq 300
  • 1 \leq a_i \leq 300(1\leq i\leq N)
  • 入力はすべて整数である

入力

入力は以下の形式で標準入力から与えられる。

N
a_1
:
a_N

出力

与えられたすべての整数を赤、緑、青の 3 色のいずれかで塗り、条件を満たすようにする方法の個数を 998244353 で割ったあまりを出力せよ。


入力例 1

4
1
1
1
2

出力例 1

18

三角形の三辺の長さがそれぞれ 1,2,2 となるように整数を塗り分けるしかなく、そのような塗り分け方は 18 通り存在します。


入力例 2

6
1
3
2
3
5
2

出力例 2

150

入力例 3

20
3
1
4
1
5
9
2
6
5
3
5
8
9
7
9
3
2
3
8
4

出力例 3

563038556

Score : 600 points

Problem Statement

You are given N integers. The i-th integer is a_i. Find the number, modulo 998244353, of ways to paint each of the integers red, green or blue so that the following condition is satisfied:

  • Let R, G and B be the sums of the integers painted red, green and blue, respectively. There exists a triangle with positive area whose sides have lengths R, G and B.

Constraints

  • 3 \leq N \leq 300
  • 1 \leq a_i \leq 300(1\leq i\leq N)
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
a_1
:
a_N

Output

Print the number, modulo 998244353, of ways to paint each of the integers red, green or blue so that the condition is satisfied.


Sample Input 1

4
1
1
1
2

Sample Output 1

18

We can only paint the integers so that the lengths of the sides of the triangle will be 1, 2 and 2, and there are 18 such ways.


Sample Input 2

6
1
3
2
3
5
2

Sample Output 2

150

Sample Input 3

20
3
1
4
1
5
9
2
6
5
3
5
8
9
7
9
3
2
3
8
4

Sample Output 3

563038556