Contest Duration: - (local time) (100 minutes) Back to Home
C - 4/N /

Time Limit: 2 sec / Memory Limit: 256 MB

### 問題文

4/N = 1/h + 1/n + 1/w を満たす正整数 h, n, w を求めよ。

### 制約

• N に対して h, n, w \leq 3500 となる解が存在することが保証される。

### 入力

N

### 出力

h n w

### 入力例 1

2

### 出力例 1

1 2 2

4/2 = 1/1 + 1/2 + 1/2である。

### 入力例 2

3485

### 出力例 2

872 1012974 1539173474040

### 入力例 3

4664

### 出力例 3

3498 3498 3498

Score : 300 points

### Problem Statement

You are given an integer N.

Find a triple of positive integers h, n and w such that 4/N = 1/h + 1/n + 1/w.

If there are multiple solutions, any of them will be accepted.

### Constraints

• It is guaranteed that, for the given integer N, there exists a solution such that h,n,w \leq 3500.

### Inputs

Input is given from Standard Input in the following format:

N


### Outputs

Print a triple of positive integers h, n and w that satisfies the condition, in the following format:

h n w


### Sample Input 1

2


### Sample Output 1

1 2 2


4/2 = 1/1 + 1/2 + 1/2.

### Sample Input 2

3485


### Sample Output 2

872 1012974 1539173474040


It is allowed to use an integer exceeding 3500 in a solution.

### Sample Input 3

4664


### Sample Output 3

3498 3498 3498