D - Restore the Tree

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 500

問題文

N 頂点の根付き木 (注記を参照) があり、その頂点には 1 から N までの番号が振られています。 根以外の各頂点には、その親から一本の有向辺が伸びています。 なお、根は頂点 1 とは限りません。

高橋くんは、このグラフに M 本の新たな有向辺を書き加えました。 書き足された各辺 u \rightarrow v は、ある頂点 u からその子孫であるような頂点 v に向かって伸びています。

高橋くんが辺を書き加えたあとの N 頂点 N-1+M 辺の有向グラフが与えられます。 より具体的には、N-1+M 組の整数のペア (A_1, B_1), ..., (A_{N-1+M}, B_{N-1+M}) が与えられ、これらは i 番目の辺が頂点 A_i から頂点 B_i に向かって伸びていることを表します。

元の根付き木を復元してください。

注記

「木」や関連するグラフ理論の用語に関しては、Wikipediaの記事などをご覧ください。

制約

  • 3 \leq N
  • 1 \leq M
  • N + M \leq 10^5
  • 1 \leq A_i, B_i \leq N
  • A_i \neq B_i
  • i \neq j ならば (A_i, B_i) \neq (A_j, B_j)
  • 入力されるグラフは、N 頂点の根付き木に問題文中の条件を満たす M 本の辺を書き足すことで得られる。

入力

入力は以下の形式で標準入力から与えられる。

N M
A_1 B_1
:
A_{N-1+M} B_{N-1+M}

出力

N 行出力せよ。 i 行目には、頂点 i が元の木の根であれば 0 を出力し、そうでなければ元の木で頂点 i の親を表す整数を出力すること。

なお、元の木は一意に定まることが示せる。


入力例 1

3 1
1 2
1 3
2 3

出力例 1

0
1
2

入力されたグラフは次のようなものです。

これは、1 \rightarrow 2 \rightarrow 3 という根付き木に辺 1 \rightarrow 3 を書き足したものであると考えられます。


入力例 2

6 3
2 1
2 3
4 1
4 2
6 1
2 6
4 6
6 5

出力例 2

6
4
2
0
6
2

Score : 500 points

Problem Statement

There is a rooted tree (see Notes) with N vertices numbered 1 to N. Each of the vertices, except the root, has a directed edge coming from its parent. Note that the root may not be Vertex 1.

Takahashi has added M new directed edges to this graph. Each of these M edges, u \rightarrow v, extends from some vertex u to its descendant v.

You are given the directed graph with N vertices and N-1+M edges after Takahashi added edges. More specifically, you are given N-1+M pairs of integers, (A_1, B_1), ..., (A_{N-1+M}, B_{N-1+M}), which represent that the i-th edge extends from Vertex A_i to Vertex B_i.

Restore the original rooted tree.

Notes

For "tree" and other related terms in graph theory, see the article in Wikipedia, for example.

Constraints

  • 3 \leq N
  • 1 \leq M
  • N + M \leq 10^5
  • 1 \leq A_i, B_i \leq N
  • A_i \neq B_i
  • If i \neq j, (A_i, B_i) \neq (A_j, B_j).
  • The graph in input can be obtained by adding M edges satisfying the condition in the problem statement to a rooted tree with N vertices.

Input

Input is given from Standard Input in the following format:

N M
A_1 B_1
:
A_{N-1+M} B_{N-1+M}

Output

Print N lines. In the i-th line, print 0 if Vertex i is the root of the original tree, and otherwise print the integer representing the parent of Vertex i in the original tree.

Note that it can be shown that the original tree is uniquely determined.


Sample Input 1

3 1
1 2
1 3
2 3

Sample Output 1

0
1
2

The graph in this input is shown below:

It can be seen that this graph is obtained by adding the edge 1 \rightarrow 3 to the rooted tree 1 \rightarrow 2 \rightarrow 3.


Sample Input 2

6 3
2 1
2 3
4 1
4 2
6 1
2 6
4 6
6 5

Sample Output 2

6
4
2
0
6
2