B - Kleene Inversion

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 300

問題文

長さ N の整数列 A~=~A_0,~A_1,~...,~A_{N - 1} があります。

AK 回繰り返した長さ K \times N の整数列を B とします。たとえば A~=~1,~3,~2K~=~2 のとき、 B~=~1,~3,~2,~1,~3,~2 です。

B の転倒数を 10^9 + 7 で割った余りを求めてください。

ここで B の転倒数は、整数の順序対 (i,~j)~(0 \leq i < j \leq K \times N - 1) であって B_i > B_j を満たすものの個数として定義されます。

制約

  • 入力は全て整数である。
  • 1 \leq N \leq 2000
  • 1 \leq K \leq 10^9
  • 1 \leq A_i \leq 2000

入力

入力は以下の形式で標準入力から与えられる。

N K
A_0 A_1 ... A_{N - 1}

出力

B の転倒数を 10^9 + 7 で割った余りを出力せよ。


入力例 1

2 2
2 1

出力例 1

3

このケースでは B~=~2,~1,~2,~1 です。

  • B_0 > B_1
  • B_0 > B_3
  • B_2 > B_3

であり、B の転倒数は 3 です。


入力例 2

3 5
1 1 1

出力例 2

0

A は同じ数を複数含むこともあります。


入力例 3

10 998244353
10 9 8 7 5 6 3 4 2 1

出力例 3

185297239

10^9 + 7 で割った余りを出力することに注意してください。

Score : 300 points

Problem Statement

We have a sequence of N integers A~=~A_0,~A_1,~...,~A_{N - 1}.

Let B be a sequence of K \times N integers obtained by concatenating K copies of A. For example, if A~=~1,~3,~2 and K~=~2, B~=~1,~3,~2,~1,~3,~2.

Find the inversion number of B, modulo 10^9 + 7.

Here the inversion number of B is defined as the number of ordered pairs of integers (i,~j)~(0 \leq i < j \leq K \times N - 1) such that B_i > B_j.

Constraints

  • All values in input are integers.
  • 1 \leq N \leq 2000
  • 1 \leq K \leq 10^9
  • 1 \leq A_i \leq 2000

Input

Input is given from Standard Input in the following format:

N K
A_0 A_1 ... A_{N - 1}

Output

Print the inversion number of B, modulo 10^9 + 7.


Sample Input 1

2 2
2 1

Sample Output 1

3

In this case, B~=~2,~1,~2,~1. We have:

  • B_0 > B_1
  • B_0 > B_3
  • B_2 > B_3

Thus, the inversion number of B is 3.


Sample Input 2

3 5
1 1 1

Sample Output 2

0

A may contain multiple occurrences of the same number.


Sample Input 3

10 998244353
10 9 8 7 5 6 3 4 2 1

Sample Output 3

185297239

Be sure to print the output modulo 10^9 + 7.