Z - Frog 3

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 100

問題文

N 個の足場があります。 足場には 1, 2, \ldots, N と番号が振られています。 各 i (1 \leq i \leq N) について、足場 i の高さは h_i です。 ここで、h_1 < h_2 < \cdots < h_N です。

最初、足場 1 にカエルがいます。 カエルは次の行動を何回か繰り返し、足場 N まで辿り着こうとしています。

  • 足場 i にいるとき、足場 i + 1, i + 2, \ldots, N のどれかへジャンプする。 このとき、ジャンプ先の足場を j とすると、コスト (h_j - h_i)^2 + C を支払う。

カエルが足場 N に辿り着くまでに支払うコストの総和の最小値を求めてください。

制約

  • 入力はすべて整数である。
  • 2 \leq N \leq 2 \times 10^5
  • 1 \leq C \leq 10^{12}
  • 1 \leq h_1 < h_2 < \cdots < h_N \leq 10^6

入力

入力は以下の形式で標準入力から与えられる。

N C
h_1 h_2 \ldots h_N

出力

カエルが支払うコストの総和の最小値を出力せよ。


入力例 1

5 6
1 2 3 4 5

出力例 1

20

足場 135 と移動すると、コストの総和は ((3 - 1)^2 + 6) + ((5 - 3)^2 + 6) = 20 となります。


入力例 2

2 1000000000000
500000 1000000

出力例 2

1250000000000

答えは 32-bit 整数型に収まらない場合があります。


入力例 3

8 5
1 3 4 5 10 11 12 13

出力例 3

62

足場 12458 と移動すると、コストの総和は ((3 - 1)^2 + 5) + ((5 - 3)^2 + 5) + ((10 - 5)^2 + 5) + ((13 - 10)^2 + 5) = 62 となります。

Score : 100 points

Problem Statement

There are N stones, numbered 1, 2, \ldots, N. For each i (1 \leq i \leq N), the height of Stone i is h_i. Here, h_1 < h_2 < \cdots < h_N holds.

There is a frog who is initially on Stone 1. He will repeat the following action some number of times to reach Stone N:

  • If the frog is currently on Stone i, jump to one of the following: Stone i + 1, i + 2, \ldots, N. Here, a cost of (h_j - h_i)^2 + C is incurred, where j is the stone to land on.

Find the minimum possible total cost incurred before the frog reaches Stone N.

Constraints

  • All values in input are integers.
  • 2 \leq N \leq 2 \times 10^5
  • 1 \leq C \leq 10^{12}
  • 1 \leq h_1 < h_2 < \cdots < h_N \leq 10^6

Input

Input is given from Standard Input in the following format:

N C
h_1 h_2 \ldots h_N

Output

Print the minimum possible total cost incurred.


Sample Input 1

5 6
1 2 3 4 5

Sample Output 1

20

If we follow the path 135, the total cost incurred would be ((3 - 1)^2 + 6) + ((5 - 3)^2 + 6) = 20.


Sample Input 2

2 1000000000000
500000 1000000

Sample Output 2

1250000000000

The answer may not fit into a 32-bit integer type.


Sample Input 3

8 5
1 3 4 5 10 11 12 13

Sample Output 3

62

If we follow the path 12458, the total cost incurred would be ((3 - 1)^2 + 5) + ((5 - 3)^2 + 5) + ((10 - 5)^2 + 5) + ((13 - 10)^2 + 5) = 62.