Contest Duration: - (local time) (300 minutes)
Q - Flowers /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

N 本の花が横一列に並んでいます。 各 i (1 \leq i \leq N) について、左から i 番目の花の高さは h_i で、美しさは a_i です。 ただし、h_1, h_2, \ldots, h_N はすべて相異なります。

• 残りの花を左から順に見ると、高さが単調増加になっている。

### 制約

• 入力はすべて整数である。
• 1 \leq N \leq 2 × 10^5
• 1 \leq h_i \leq N
• h_1, h_2, \ldots, h_N はすべて相異なる。
• 1 \leq a_i \leq 10^9

### 入力

N
h_1 h_2 \ldots h_N
a_1 a_2 \ldots a_N


### 入力例 1

4
3 1 4 2
10 20 30 40


### 出力例 1

60


### 入力例 2

1
1
10


### 出力例 2

10


### 入力例 3

5
1 2 3 4 5
1000000000 1000000000 1000000000 1000000000 1000000000


### 出力例 3

5000000000


### 入力例 4

9
4 2 5 8 3 6 1 7 9
6 8 8 4 6 3 5 7 5


### 出力例 4

31


Score : 100 points

### Problem Statement

There are N flowers arranged in a row. For each i (1 \leq i \leq N), the height and the beauty of the i-th flower from the left is h_i and a_i, respectively. Here, h_1, h_2, \ldots, h_N are all distinct.

Taro is pulling out some flowers so that the following condition is met:

• The heights of the remaining flowers are monotonically increasing from left to right.

Find the maximum possible sum of the beauties of the remaining flowers.

### Constraints

• All values in input are integers.
• 1 \leq N \leq 2 × 10^5
• 1 \leq h_i \leq N
• h_1, h_2, \ldots, h_N are all distinct.
• 1 \leq a_i \leq 10^9

### Input

Input is given from Standard Input in the following format:

N
h_1 h_2 \ldots h_N
a_1 a_2 \ldots a_N


### Output

Print the maximum possible sum of the beauties of the remaining flowers.

### Sample Input 1

4
3 1 4 2
10 20 30 40


### Sample Output 1

60


We should keep the second and fourth flowers from the left. Then, the heights would be 1, 2 from left to right, which is monotonically increasing, and the sum of the beauties would be 20 + 40 = 60.

### Sample Input 2

1
1
10


### Sample Output 2

10


The condition is met already at the beginning.

### Sample Input 3

5
1 2 3 4 5
1000000000 1000000000 1000000000 1000000000 1000000000


### Sample Output 3

5000000000


The answer may not fit into a 32-bit integer type.

### Sample Input 4

9
4 2 5 8 3 6 1 7 9
6 8 8 4 6 3 5 7 5


### Sample Output 4

31


We should keep the second, third, sixth, eighth and ninth flowers from the left.