M - Candies

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 100

問題文

N 人の子供たちがいます。 子供たちには 1, 2, \ldots, N と番号が振られています。

子供たちは K 個の飴を分け合うことにしました。 このとき、各 i (1 \leq i \leq N) について、子供 i が受け取る飴の個数は 0 以上 a_i 以下でなければなりません。 また、飴が余ってはいけません。

子供たちが飴を分け合う方法は何通りでしょうか? 10^9 + 7 で割った余りを求めてください。 ただし、2 通りの方法が異なるとは、ある子供が存在し、その子供が受け取る飴の個数が異なることを言います。

制約

  • 入力はすべて整数である。
  • 1 \leq N \leq 100
  • 0 \leq K \leq 10^5
  • 0 \leq a_i \leq K

入力

入力は以下の形式で標準入力から与えられる。

N K
a_1 a_2 \ldots a_N

出力

子供たちが飴を分け合う方法は何通りか? 10^9 + 7 で割った余りを出力せよ。


入力例 1

3 4
1 2 3

出力例 1

5

子供たちが飴を分け合う方法は、次の 5 通りです。 各数列において、i 番目の要素は子供 i が受け取る飴の個数を表します。

  • (0, 1, 3)
  • (0, 2, 2)
  • (1, 0, 3)
  • (1, 1, 2)
  • (1, 2, 1)

入力例 2

1 10
9

出力例 2

0

子供たちが飴を分け合う方法が存在しない場合もあります。


入力例 3

2 0
0 0

出力例 3

1

子供たちが飴を分け合う方法は、次の 1 通りです。

  • (0, 0)

入力例 4

4 100000
100000 100000 100000 100000

出力例 4

665683269

答えを 10^9 + 7 で割った余りを出力することを忘れずに。

Score : 100 points

Problem Statement

There are N children, numbered 1, 2, \ldots, N.

They have decided to share K candies among themselves. Here, for each i (1 \leq i \leq N), Child i must receive between 0 and a_i candies (inclusive). Also, no candies should be left over.

Find the number of ways for them to share candies, modulo 10^9 + 7. Here, two ways are said to be different when there exists a child who receives a different number of candies.

Constraints

  • All values in input are integers.
  • 1 \leq N \leq 100
  • 0 \leq K \leq 10^5
  • 0 \leq a_i \leq K

Input

Input is given from Standard Input in the following format:

N K
a_1 a_2 \ldots a_N

Output

Print the number of ways for the children to share candies, modulo 10^9 + 7.


Sample Input 1

3 4
1 2 3

Sample Output 1

5

There are five ways for the children to share candies, as follows:

  • (0, 1, 3)
  • (0, 2, 2)
  • (1, 0, 3)
  • (1, 1, 2)
  • (1, 2, 1)

Here, in each sequence, the i-th element represents the number of candies that Child i receives.


Sample Input 2

1 10
9

Sample Output 2

0

There may be no ways for the children to share candies.


Sample Input 3

2 0
0 0

Sample Output 3

1

There is one way for the children to share candies, as follows:

  • (0, 0)

Sample Input 4

4 100000
100000 100000 100000 100000

Sample Output 4

665683269

Be sure to print the answer modulo 10^9 + 7.