I - Coins

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 100

問題文

N を正の奇数とします。

N 枚のコインがあります。 コインには 1, 2, \ldots, N と番号が振られています。 各 i (1 \leq i \leq N) について、コイン i を投げると、確率 p_i で表が出て、確率 1 - p_i で裏が出ます。

太郎君は N 枚のコインをすべて投げました。 このとき、表の個数が裏の個数を上回る確率を求めてください。

制約

  • N は奇数である。
  • 1 \leq N \leq 2999
  • p_i は実数であり、小数第 2 位まで与えられる。
  • 0 < p_i < 1

入力

入力は以下の形式で標準入力から与えられる。

N
p_1 p_2 \ldots p_N

出力

表の個数が裏の個数を上回る確率を出力せよ。 絶対誤差が 10^{-9} 以下ならば正解となる。


入力例 1

3
0.30 0.60 0.80

出力例 1

0.612

表の個数が裏の個数を上回るような各ケースの確率を計算すると、次のようになります。

  • (コイン 1, コイン 2, コイン 3) = (表, 表, 表) となる確率は、0.3 × 0.6 × 0.8 = 0.144 である。
  • (コイン 1, コイン 2, コイン 3) = (裏, 表, 表) となる確率は、0.7 × 0.6 × 0.8 = 0.336 である。
  • (コイン 1, コイン 2, コイン 3) = (表, 裏, 表) となる確率は、0.3 × 0.4 × 0.8 = 0.096 である。
  • (コイン 1, コイン 2, コイン 3) = (表, 表, 裏) となる確率は、0.3 × 0.6 × 0.2 = 0.036 である。

よって、表の個数が裏の個数を上回る確率は、0.144 + 0.336 + 0.096 + 0.036 = 0.612 です。


入力例 2

1
0.50

出力例 2

0.5

例えば、0.500, 0.500000001, 0.499999999 などを出力しても正解となります。


入力例 3

5
0.42 0.01 0.42 0.99 0.42

出力例 3

0.3821815872

Score : 100 points

Problem Statement

Let N be a positive odd number.

There are N coins, numbered 1, 2, \ldots, N. For each i (1 \leq i \leq N), when Coin i is tossed, it comes up heads with probability p_i and tails with probability 1 - p_i.

Taro has tossed all the N coins. Find the probability of having more heads than tails.

Constraints

  • N is an odd number.
  • 1 \leq N \leq 2999
  • p_i is a real number and has two decimal places.
  • 0 < p_i < 1

Input

Input is given from Standard Input in the following format:

N
p_1 p_2 \ldots p_N

Output

Print the probability of having more heads than tails. The output is considered correct when the absolute error is not greater than 10^{-9}.


Sample Input 1

3
0.30 0.60 0.80

Sample Output 1

0.612

The probability of each case where we have more heads than tails is as follows:

  • The probability of having (Coin 1, Coin 2, Coin 3) = (Head, Head, Head) is 0.3 × 0.6 × 0.8 = 0.144;
  • The probability of having (Coin 1, Coin 2, Coin 3) = (Tail, Head, Head) is 0.7 × 0.6 × 0.8 = 0.336;
  • The probability of having (Coin 1, Coin 2, Coin 3) = (Head, Tail, Head) is 0.3 × 0.4 × 0.8 = 0.096;
  • The probability of having (Coin 1, Coin 2, Coin 3) = (Head, Head, Tail) is 0.3 × 0.6 × 0.2 = 0.036.

Thus, the probability of having more heads than tails is 0.144 + 0.336 + 0.096 + 0.036 = 0.612.


Sample Input 2

1
0.50

Sample Output 2

0.5

Outputs such as 0.500, 0.500000001 and 0.499999999 are also considered correct.


Sample Input 3

5
0.42 0.01 0.42 0.99 0.42

Sample Output 3

0.3821815872