Submission #25084524


Source Code Expand

#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
#include <utility>
#include <vector>

template <int M>
struct MInt {
  unsigned int val;
  MInt(): val(0) {}
  MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(int divisor) { assert(divisor == M); }
  static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
  static MInt inv(int x, bool init = false) {
    // assert(0 <= x && x < M && std::__gcd(x, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    int prev = inverse.size();
    if (init && x >= prev) {
      // "x!" and "M" must be disjoint.
      inverse.resize(x + 1);
      for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
    }
    if (x < inverse.size()) return inverse[x];
    unsigned int a = x, b = M; int u = 1, v = 0;
    while (b) {
      unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(int x) {
    static std::vector<MInt> f{1};
    int prev = f.size();
    if (x >= prev) {
      f.resize(x + 1);
      for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
    }
    return f[x];
  }
  static MInt fact_inv(int x) {
    static std::vector<MInt> finv{1};
    int prev = finv.size();
    if (x >= prev) {
      finv.resize(x + 1);
      finv[x] = inv(fact(x).val);
      for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
    }
    return finv[x];
  }
  static MInt nCk(int n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    if (n - k > k) k = n - k;
    return fact(n) * fact_inv(k) * fact_inv(n - k);
  }
  static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
  static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
  static MInt large_nCk(long long n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
    return res;
  }
  MInt pow(long long exponent) const {
    MInt tmp = *this, res = 1;
    while (exponent > 0) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
      exponent >>= 1;
    }
    return res;
  }
  MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
  MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
  MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
  MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
  bool operator==(const MInt &x) const { return val == x.val; }
  bool operator!=(const MInt &x) const { return val != x.val; }
  bool operator<(const MInt &x) const { return val < x.val; }
  bool operator<=(const MInt &x) const { return val <= x.val; }
  bool operator>(const MInt &x) const { return val > x.val; }
  bool operator>=(const MInt &x) const { return val >= x.val; }
  MInt &operator++() { if (++val == M) val = 0; return *this; }
  MInt operator++(int) { MInt res = *this; ++*this; return res; }
  MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
  MInt operator--(int) { MInt res = *this; --*this; return res; }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(val ? M - val : 0); }
  MInt operator+(const MInt &x) const { return MInt(*this) += x; }
  MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
  friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
  friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }

namespace fast_fourier_transform {
using Real = double;
struct Complex {
  Real re, im;
  Complex(Real re = 0, Real im = 0) : re(re), im(im) {}
  inline Complex operator+(const Complex &x) const { return Complex(re + x.re, im + x.im); }
  inline Complex operator-(const Complex &x) const { return Complex(re - x.re, im - x.im); }
  inline Complex operator*(const Complex &x) const { return Complex(re * x.re - im * x.im, re * x.im + im * x.re); }
  inline Complex mul_real(Real r) const { return Complex(re * r, im * r); }
  inline Complex mul_pin(Real r) const { return Complex(-im * r, re * r); }
  inline Complex conj() const { return Complex(re, -im); }
};

std::vector<int> butterfly{0};
std::vector<std::vector<Complex>> zeta{{{1, 0}}};

void init(int n) {
  const int prev_n = butterfly.size();
  if (n <= prev_n) return;
  butterfly.resize(n);
  const int prev = zeta.size(), lg = __builtin_ctz(n);
  for (int i = 1; i < prev_n; ++i) butterfly[i] <<= lg - prev;
  for (int i = prev_n; i < n; ++i) butterfly[i] = (butterfly[i >> 1] >> 1) | ((i & 1) << (lg - 1));
  zeta.resize(lg);
  for (int i = prev; i < lg; ++i) {
    zeta[i].resize(1 << i);
    Real angle = -3.14159265358979323846 * 2 / (1 << (i + 1));
    for (int j = 0; j < (1 << (i - 1)); ++j) {
      zeta[i][j << 1] = zeta[i - 1][j];
      Real theta = angle * ((j << 1) + 1);
      zeta[i][(j << 1) + 1] = {std::cos(theta), std::sin(theta)};
    }
  }
}

void dft(std::vector<Complex> &a) {
  const int n = a.size();
  assert(__builtin_popcount(n) == 1);
  init(n);
  const int shift = __builtin_ctz(butterfly.size()) - __builtin_ctz(n);
  for (int i = 0; i < n; ++i) {
    const int j = butterfly[i] >> shift;
    if (i < j) std::swap(a[i], a[j]);
  }
  for (int block = 1, den = 0; block < n; block <<= 1, ++den) {
    for (int i = 0; i < n; i += (block << 1)) for (int j = 0; j < block; ++j) {
      Complex tmp = a[i + j + block] * zeta[den][j];
      a[i + j + block] = a[i + j] - tmp;
      a[i + j] = a[i + j] + tmp;
    }
  }
}

template <typename T>
std::vector<Complex> real_dft(const std::vector<T> &a) {
  const int n = a.size();
  int lg = 1;
  while ((1 << lg) < n) ++lg;
  std::vector<Complex> c(1 << lg);
  for (int i = 0; i < n; ++i) c[i].re = a[i];
  dft(c);
  return c;
}

void idft(std::vector<Complex> &a) {
  const int n = a.size();
  dft(a);
  std::reverse(a.begin() + 1, a.end());
  Real r = 1.0 / n;
  for (int i = 0; i < n; ++i) a[i] = a[i].mul_real(r);
}

template <typename T>
std::vector<Real> convolution(const std::vector<T> &a, const std::vector<T> &b) {
  const int a_size = a.size(), b_size = b.size(), c_size = a_size + b_size - 1;
  int lg = 1;
  while ((1 << lg) < c_size) ++lg;
  const int n = 1 << lg, half = n >> 1, quarter = half >> 1;
  std::vector<Complex> c(n);
  for (int i = 0; i < a_size; ++i) c[i].re = a[i];
  for (int i = 0; i < b_size; ++i) c[i].im = b[i];
  dft(c);
  c[0] = Complex(c[0].re * c[0].im, 0);
  for (int i = 1; i < half; ++i) {
    Complex i_square = c[i] * c[i], j_square = c[n - i] * c[n - i];
    c[i] = (j_square.conj() - i_square).mul_pin(0.25);
    c[n - i] = (i_square.conj() - j_square).mul_pin(0.25);
  }
  c[half] = Complex(c[half].re * c[half].im, 0);
  c[0] = (c[0] + c[half] + (c[0] - c[half]).mul_pin(1)).mul_real(0.5);
  const int den = __builtin_ctz(half);
  for (int i = 1; i < quarter; ++i) {
    const int j = half - i;
    Complex tmp1 = c[i] + c[j].conj(), tmp2 = ((c[i] - c[j].conj()) * zeta[den][j]).mul_pin(1);
    c[i] = (tmp1 - tmp2).mul_real(0.5);
    c[j] = (tmp1 + tmp2).mul_real(0.5).conj();
  }
  if (quarter > 0) c[quarter] = c[quarter].conj();
  c.resize(half);
  idft(c);
  std::vector<Real> res(c_size);
  for (int i = 0; i < c_size; ++i) res[i] = (i & 1 ? c[i >> 1].im : c[i >> 1].re);
  return res;
}
}  // fast_fourier_transform

template <int T>
std::vector<MInt<T>> mod_convolution(const std::vector<MInt<T>> &a, const std::vector<MInt<T>> &b, const int pre = 15) {
  using ModInt = MInt<T>;
  const int a_size = a.size(), b_size = b.size(), c_size = a_size + b_size - 1;
  int lg = 1;
  while ((1 << lg) < c_size) ++lg;
  const int n = 1 << lg, mask = (1 << pre) - 1;
  std::vector<fast_fourier_transform::Complex> A(n), B(n);
  for (int i = 0; i < a_size; ++i) {
    const int a_i = a[i].val;
    A[i] = fast_fourier_transform::Complex(a_i & mask, a_i >> pre);
  }
  for (int i = 0; i < b_size; ++i) {
    const int b_i = b[i].val;
    B[i] = fast_fourier_transform::Complex(b_i & mask, b_i >> pre);
  }
  fast_fourier_transform::dft(A);
  fast_fourier_transform::dft(B);
  const int half = n >> 1;
  fast_fourier_transform::Complex tmp_a = A[0], tmp_b = B[0];
  A[0] = {tmp_a.re * tmp_b.re, tmp_a.im * tmp_b.im};
  B[0] = {tmp_a.re * tmp_b.im + tmp_a.im * tmp_b.re, 0};
  for (int i = 1; i < half; ++i) {
    const int j = n - i;
    fast_fourier_transform::Complex a_l_i = (A[i] + A[j].conj()).mul_real(0.5), a_h_i = (A[j].conj() - A[i]).mul_pin(0.5);
    fast_fourier_transform::Complex b_l_i = (B[i] + B[j].conj()).mul_real(0.5), b_h_i = (B[j].conj() - B[i]).mul_pin(0.5);
    fast_fourier_transform::Complex a_l_j = (A[j] + A[i].conj()).mul_real(0.5), a_h_j = (A[i].conj() - A[j]).mul_pin(0.5);
    fast_fourier_transform::Complex b_l_j = (B[j] + B[i].conj()).mul_real(0.5), b_h_j = (B[i].conj() - B[j]).mul_pin(0.5);
    A[i] = a_l_i * b_l_i + (a_h_i * b_h_i).mul_pin(1);
    B[i] = a_l_i * b_h_i + a_h_i * b_l_i;
    A[j] = a_l_j * b_l_j + (a_h_j * b_h_j).mul_pin(1);
    B[j] = a_l_j * b_h_j + a_h_j * b_l_j;
  }
  tmp_a = A[half]; tmp_b = B[half];
  A[half] = {tmp_a.re * tmp_b.re, tmp_a.im * tmp_b.im};
  B[half] = {tmp_a.re * tmp_b.im + tmp_a.im * tmp_b.re, 0};
  fast_fourier_transform::idft(A);
  fast_fourier_transform::idft(B);
  std::vector<ModInt> res(c_size);
  ModInt tmp1 = 1 << pre, tmp2 = 1LL << (pre << 1);
  for (int i = 0; i < c_size; ++i) {
    res[i] = std::llround(A[i].re);
    res[i] += tmp1 * std::llround(B[i].re);
    res[i] += tmp2 * std::llround(A[i].im);
  }
  return res;
}

int main() {
  using ModInt = MInt<1000000001>;
  int n;
  std::cin >> n;
  std::vector<ModInt> a(n + 1, 0), b(n + 1, 0);
  for (int i = 1; i <= n; ++i) std::cin >> a[i] >> b[i];
  std::vector<ModInt> ans = mod_convolution(a, b);
  for (int i = 1; i <= n * 2; ++i) std::cout << ans[i] << '\n';
  return 0;
}

Submission Info

Submission Time
Task C - 高速フーリエ変換
User emthrm
Language C++ (GCC 9.2.1)
Score 100
Code Size 10489 Byte
Status AC
Exec Time 91 ms
Memory 18716 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 100 / 100
Status
AC × 1
AC × 33
Set Name Test Cases
Sample 00_sample_01
All 00_sample_01, 01_00_01, 01_01_19, 01_02_31, 01_03_22, 01_04_31, 01_05_40, 01_06_15, 01_07_39, 01_08_28, 01_09_30, 01_10_23, 01_11_33, 01_12_11, 01_13_28, 01_14_41, 01_15_26, 01_16_49, 01_17_34, 01_18_02, 01_19_33, 01_20_29, 02_00_51254, 02_01_82431, 02_02_17056, 02_03_34866, 02_04_6779, 02_05_65534, 02_06_65535, 02_07_65536, 02_08_65537, 02_09_65538, 02_10_100000
Case Name Status Exec Time Memory
00_sample_01 AC 8 ms 3912 KiB
01_00_01 AC 2 ms 3936 KiB
01_01_19 AC 2 ms 3796 KiB
01_02_31 AC 3 ms 3952 KiB
01_03_22 AC 2 ms 3804 KiB
01_04_31 AC 1 ms 3820 KiB
01_05_40 AC 2 ms 4016 KiB
01_06_15 AC 2 ms 3828 KiB
01_07_39 AC 2 ms 3776 KiB
01_08_28 AC 2 ms 3912 KiB
01_09_30 AC 2 ms 3896 KiB
01_10_23 AC 2 ms 3884 KiB
01_11_33 AC 2 ms 3896 KiB
01_12_11 AC 2 ms 3936 KiB
01_13_28 AC 2 ms 3864 KiB
01_14_41 AC 2 ms 3868 KiB
01_15_26 AC 2 ms 3892 KiB
01_16_49 AC 2 ms 3916 KiB
01_17_34 AC 2 ms 3892 KiB
01_18_02 AC 2 ms 3908 KiB
01_19_33 AC 3 ms 3912 KiB
01_20_29 AC 3 ms 3780 KiB
02_00_51254 AC 52 ms 11192 KiB
02_01_82431 AC 84 ms 18320 KiB
02_02_17056 AC 27 ms 7136 KiB
02_03_34866 AC 44 ms 10812 KiB
02_04_6779 AC 15 ms 4480 KiB
02_05_65534 AC 58 ms 11172 KiB
02_06_65535 AC 57 ms 11304 KiB
02_07_65536 AC 77 ms 17976 KiB
02_08_65537 AC 75 ms 18188 KiB
02_09_65538 AC 75 ms 18028 KiB
02_10_100000 AC 91 ms 18716 KiB