Submission #68597938
Source Code Expand
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef __int128 lll;
using ull = unsigned long long;
typedef pair<ll,ll> pll;
typedef vector<ll> vll;
typedef vector<pll> vpll;
template<class T> using pqmin = priority_queue<T, vector<T>, greater<T>>;
template<class T> using pqmax = priority_queue<T>;
const ll inf=LLONG_MAX/3;
const ll dx[] = {0, 1, 0, -1, 1, -1, 1, -1};
const ll dy[] = {1, 0, -1, 0, 1, 1, -1, -1};
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define si(x) ll(x.size())
#define rept(n) for(ll _ovo_=0;_ovo_<n;_ovo_++)
#define rep(i,n) for(ll i=0;i<n;i++)
#define per(i,n) for(ll i=n-1;i>=0;i--)
#define rng(i,l,r) for(ll i=l;i<r;i++)
#define gnr(i,l,r) for(ll i=r-1;i>=l;i--)
#define fore(i, a) for(auto &&i : a)
#define fore2(a, b, v) for(auto &&[a, b] : v)
#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)
template<class T> bool chmin(T& a, const T& b){ if(a <= b) return 0; a = b; return 1; }
template<class T> bool chmax(T& a, const T& b){ if(a >= b) return 0; a = b; return 1; }
template<class T, class U> bool chmin(T& a, const U& b){ return chmin(a, (T)b); }
template<class T, class U> bool chmax(T& a, const U& b){ return chmax(a, (T)b); }
#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)
#define vec(type,name,...) vector<type>name(__VA_ARGS__)
#define VEC(type,name,size) vector<type>name(size);in(name)
#define VLL(name,size) vector<ll>name(size);in(name)
#define vv(type,name,h,...) vector<vector<type>> name(h,vector<type>(__VA_ARGS__))
#define VV(type,name,h,w) vector<vector<type>> name(h,vector<type>(w));in(name)
#define vvv(type,name,h,w,...) vector<vector<vector<type>>> name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))
#define SUM(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class T, class F = less<>> void sor(T& a, F b = F{}){ sort(all(a), b); }
template<class T> void uniq(T& a){ sor(a); a.erase(unique(all(a)), end(a)); }
template<class T, class F = less<>> map<T,vector<ll> > ivm(vector<T>& a, F b = F{}){ map<T,vector<ll> > ret; rep(i,si(a))ret[a[i]].push_back(i); return ret;}
template<class T, class F = less<>> map<T,ll> ivc(vector<T>& a, F b = F{}){ map<T,ll> ret; rep(i,si(a))ret[a[i]]++; return ret;}
template<class T, class F = less<>> vector<T> ivp(vector<T> a){ vector<ll> ret(si(a)); rep(i,si(a))ret[a[i]] = i; return ret;}
template<class T, class F = less<>> vector<ll> rev(vector<T> a){ reverse(all(a)); return a;}
template<class T, class F = less<>> vector<ll> sortby(vector<T> a, F b = F{}){vector<ll> w = a; sor(w,b); vector<pll> v; rep(i,si(a))v.eb(a[i],i); sor(v); if(w[0] != v[0].first)reverse(all(v)); vector<ll> ret; rep(i,si(v))ret.pb(v[i].second); return ret;}
template<class T, class P> vector<T> filter(vector<T> a,P f){vector<T> ret;rep(i,si(a)){if(f(a[i]))ret.pb(a[i]);}return ret;}
template<class T, class P> vector<ll> filter_id(vector<T> a,P f){vector<ll> ret;rep(i,si(a)){if(f(a[i]))ret.pb(i);}return ret;}
ll monotone_left(function<bool(ll)> f){ll l = -1,r = (ll)1e18 + 1; assert(f(l + 1) >= f(r - 1)); while(l + 1 < r){ll mid = (l + r)>> 1; (f(mid)?l:r) = mid;} return l;}
ll monotone_left(ll l,ll r,function<bool(ll)> f){l--; assert(f(l + 1) >= f(r - 1)); while(l + 1 < r){ll mid = (l + r)>> 1; (f(mid)?l:r) = mid;} return l;}
ll monotone_right(function<bool(ll)> f){ll l = -1,r = (ll)1e18 + 1; assert(f(l + 1) <= f(r - 1)); while(l + 1 < r){ll mid = (l + r)>> 1; (f(mid)?r:l) = mid;} return r;}
ll monotone_right(ll l,ll r,function<bool(ll)> f){l--; assert(f(l + 1) <= f(r - 1)); while(l + 1 < r){ll mid = (l + r)>> 1; (f(mid)?r:l) = mid;} return r;}
double monotone_double_left(double l,double r,function<bool(double)> f){assert(f(l) >= f(r)); rep(_,100){double mid = (l + r) / 2.0; (f(mid)?l:r) = mid;} return l;}
double monotone_double_right(double l,double r,function<bool(double)> f){assert(f(l) <= f(r)); rep(_,100){double mid = (l + r) / 2.0; (f(mid)?l:r) = mid;} return r;}
template<class S> S unimodal_max(ll l,ll r,function<S(ll)> f){while(l + 2 < r){ll m1 = l + (r - l) / 3,m2 = l + (r - l) / 3 * 2; if(f(m1) < f(m2))l = m1; else r = m2;} S ret = f(l); rng(k,l,r + 1)chmax(ret,f(k)); return ret;}
template<class S> S unimodal_min(ll l,ll r,function<S(ll)> f){while(l + 2 < r){ll m1 = l + (r - l) / 3,m2 = l + (r - l) / 3 * 2; if(f(m1) > f(m2))l = m1; else r = m2;} S ret = f(l); rng(k,l,r + 1)chmin(ret,f(k)); return ret;}
vector<pll> neighbor4(ll x,ll y,ll h,ll w){vector<pll> ret;rep(dr,4){ll xx = x + dx[dr],yy = y + dy[dr]; if(0 <= xx && xx < h && 0 <= yy && yy <w)ret.eb(xx,yy);} return ret;};
vector<pll> neighbor8(ll x,ll y,ll h,ll w){vector<pll> ret;rep(dr,8){ll xx = x + dx[dr],yy = y + dy[dr]; if(0 <= xx && xx < h && 0 <= yy && yy <w)ret.eb(xx,yy);} return ret;};
void outb(bool x){cout<<(x?"Yes":"No")<<"\n";}
ll max(int x, ll y) { return max((ll)x, y); }
ll max(ll x, int y) { return max(x, (ll)y); }
int min(int x, ll y) { return min((ll)x, y); }
int min(ll x, int y) { return min(x, (ll)y); }
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define lbg(c, x) distance((c).begin(), lower_bound(all(c), (x), greater{}))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define ubg(c, x) distance((c).begin(), upper_bound(all(c), (x), greater{}))
ll gcd(ll a,ll b){return (b?gcd(b,a%b):a);}
vector<pll> factor(ull x){ vector<pll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }
vector<ll> divisor(ull x){ vector<ll> ans; for(ull i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); per(i,ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }
vll prime_table(ll n){vec(ll,isp,n+1,1);vll res;rng(i,2,n+1)if(isp[i]){res.pb(i);for(ll j=i*i;j<=n;j+=i)isp[j]=0;}return res;}
ll powll(lll x,ll y){lll res = 1; while(y){ if(y & 1)res = res * x; x = x * x; y >>= 1;} return res;}
ll powmod(lll x,ll y,lll mod){lll res=1; while(y){ if(y&1)res=res*x%mod; x=x*x%mod; y>>=1;} return res; }
ll modinv(ll a,ll m){ll b=m,u=1,v=0;while(b){ll t=a/b;a-=t*b;swap(a,b);u-=t*v;swap(u,v);}u%=m;if(u<0)u+=m;return u;}
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }
template <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }
template <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }
template <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }
template <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }
template <class T> vector<T> &operator++(vector<T> &v) {
fore(e, v) e++;
return v;
}
template <class T> vector<T> operator++(vector<T> &v, int) {
auto res = v;
fore(e, v) e++;
return res;
}
template <class T> vector<T> &operator--(vector<T> &v) {
fore(e, v) e--;
return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
auto res = v;
fore(e, v) e--;
return res;
}
template <class T> vector<T> &operator+=(vector<T> &l, const vector<T> &r) {
fore(e, r) l.eb(e);
return l;
}
template<class... Ts> void in(Ts&... t);
[[maybe_unused]] void print(){}
template<class T, class... Ts> void print(const T& t, const Ts&... ts);
template<class... Ts> void out(const Ts&... ts){ print(ts...); cout << '\n'; }
namespace IO{
#define VOID(a) decltype(void(a))
struct S{ S(){ cin.tie(nullptr)->sync_with_stdio(0); fixed(cout).precision(12); } }S;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){ in(get<idx>(t)...); }
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ ituple(t, make_index_sequence<tuple_size<T>::value>{}); }
template<class T> void o(const T& t){ o(t, P<4>{}); }
template<size_t N> void o(const char (&t)[N], P<4>){ cout << t; }
template<class T, size_t N> void o(const T (&t)[N], P<3>){ o(t[0]); for(size_t i = 1; i < N; i++){ o(' '); o(t[i]); } }
template<class T> auto o(const T& t, P<2>) -> VOID(cout << t){ cout << t; }
template<class T> auto o(const T& t, P<1>) -> VOID(begin(t)){ bool first = 1; for(auto&& x : t) { if(first) first = 0; else o(' '); o(x); } }
template<class T, size_t... idx> void otuple(const T& t, index_sequence<idx...>){ print(get<idx>(t)...); }
template<class T> auto o(T& t, P<0>) -> VOID(tuple_size<T>{}){ otuple(t, make_index_sequence<tuple_size<T>::value>{}); }
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO::i(t)); }
template<class T, class... Ts> void print(const T& t, const Ts&... ts){ IO::o(t); unpack(IO::o((cout << ' ', ts))); }
#undef unpack
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class mint,
int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
static constexpr int rank2 = bsf_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::ceil_pow2(n);
static const fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[bsf(~(unsigned int)(s))];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[bsf(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::ceil_pow2(n);
static const fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[bsf(~(unsigned int)(s))];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL *
mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[bsf(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using namespace atcoder;
using mint=modint998244353;
using vmint=vector<mint>;
// combination mod prime
// https://youtu.be/8uowVvQ_-Mo?t=6002
// https://youtu.be/Tgd_zLfRZOQ?t=9928
struct modinv {
int n; vector<mint> d;
modinv(): n(2), d({0,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(-d[mint::mod()%n]*(mint::mod()/n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} invs;
struct modfact {
int n; vector<mint> d;
modfact(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*n), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} facts;
struct modfactinv {
int n; vector<mint> d;
modfactinv(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*invs(n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} ifacts;
mint comb(int n, int k) {
if (n < k || k < 0) return 0;
return facts(n)*ifacts(k)*ifacts(n-k);
}
mint perm(int n, int k) {
if (n < k || k < 0) return 0;
return facts(n)*ifacts(n-k);
}
mint mcomb(int n,int m){//m objects into n places
return comb(n+m-1,m);
}
ll n;
vll a,b;
mint solve(ll r){
ll base = 0;
rep(i,n)base += b[i] - a[i];
vector<vmint> dp(n + 1,vmint(n + 1,0));
vll ruia,ruib;
{
ruia.pb(0);
rep(i,n)ruia.pb(ruia.back() + a[i]);
ruib.pb(0);
rep(i,n)ruib.pb(ruib.back() + b[i]);
}
// cout<<"base = "<<base<<endl;
auto valid = [&](ll i,ll j){
if(i < j)return false;
// if(i == n && j == n)cout<<ruib[j] - ruia[i]<<" "<<base - min(0LL,ruib[j] - ruia[i])<<endl;
return base - (ruib[j] - ruia[i]) <=r;
};
dp[0][0] = valid(0,0);
rep(i,n + 1){
rep(j,n + 1){
if(valid(i,j)){
if(i)dp[i][j] += dp[i - 1][j];
if(j)dp[i][j] += dp[i][j - 1];
}
}
}
return dp[n][n];
}
int main(){
cin.tie(0);
ios::sync_with_stdio(0);
ll l,r;
cin>>n>>l>>r;
a.resize(n);
b.resize(n);
rep(i,n)cin>>a[i];
rep(i,n)cin>>b[i];
mint ans = solve(r) - solve(l - 1);
cout<<ans.val()<<endl;
}
Submission Info
Submission Time
2025-08-17 21:27:25+0900
Task
A - Use Udon Coupon
User
ynymxiaolongbao
Language
C++ 20 (gcc 12.2)
Score
700
Code Size
33712 Byte
Status
AC
Exec Time
169 ms
Memory
101348 KiB
Compile Error
Main.cpp: In function ‘std::vector<long long int> divisor(ull)’:
Main.cpp:76:153: warning: comparison of integer expressions of different signedness: ‘__gnu_cxx::__alloc_traits<std::allocator<long long int>, long long int>::value_type’ {aka ‘long long int’} and ‘ull’ {aka ‘long long unsigned int’} [-Wsign-compare]
76 | vector<ll> divisor(ull x){ vector<ll> ans; for(ull i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); per(i,ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }
| ~~~~~~~~~~~~~~~~~~~~~~~~^~~~
Main.cpp:23:27: note: in definition of macro ‘per’
23 | #define per(i,n) for(ll i=n-1;i>=0;i--)
| ^
Judge Result
Set Name
Sample
All
Score / Max Score
0 / 0
700 / 700
Status
Set Name
Test Cases
Sample
01-sample-01.txt, 01-sample-02.txt, 01-sample-03.txt
All
01-sample-01.txt, 01-sample-02.txt, 01-sample-03.txt, 02-large-random-01.txt, 02-large-random-02.txt, 02-large-random-03.txt, 02-large-random-04.txt, 02-large-random-05.txt, 02-large-random-06.txt, 02-large-random-07.txt, 02-large-random-08.txt, 02-large-random-09.txt, 02-large-random-10.txt, 03-small-random-01.txt, 03-small-random-02.txt, 03-small-random-03.txt, 03-small-random-04.txt, 03-small-random-05.txt, 03-small-random-06.txt, 03-small-random-07.txt, 03-small-random-08.txt, 03-small-random-09.txt, 03-small-random-10.txt, 04-large-random-2-01.txt, 04-large-random-2-02.txt, 04-large-random-2-03.txt, 04-large-random-2-04.txt, 04-large-random-2-05.txt, 05-large-random-small-range-01.txt, 05-large-random-small-range-02.txt, 05-large-random-small-range-03.txt, 05-large-random-small-range-04.txt, 05-large-random-small-range-05.txt
Case Name
Status
Exec Time
Memory
01-sample-01.txt
AC
1 ms
3448 KiB
01-sample-02.txt
AC
1 ms
3504 KiB
01-sample-03.txt
AC
1 ms
3568 KiB
02-large-random-01.txt
AC
169 ms
101348 KiB
02-large-random-02.txt
AC
148 ms
99948 KiB
02-large-random-03.txt
AC
158 ms
96484 KiB
02-large-random-04.txt
AC
141 ms
93924 KiB
02-large-random-05.txt
AC
131 ms
94452 KiB
02-large-random-06.txt
AC
147 ms
93604 KiB
02-large-random-07.txt
AC
128 ms
98544 KiB
02-large-random-08.txt
AC
158 ms
95268 KiB
02-large-random-09.txt
AC
125 ms
93408 KiB
02-large-random-10.txt
AC
148 ms
93400 KiB
03-small-random-01.txt
AC
1 ms
3508 KiB
03-small-random-02.txt
AC
1 ms
3584 KiB
03-small-random-03.txt
AC
1 ms
3656 KiB
03-small-random-04.txt
AC
1 ms
3528 KiB
03-small-random-05.txt
AC
1 ms
3532 KiB
03-small-random-06.txt
AC
1 ms
3372 KiB
03-small-random-07.txt
AC
1 ms
3576 KiB
03-small-random-08.txt
AC
1 ms
3508 KiB
03-small-random-09.txt
AC
1 ms
3644 KiB
03-small-random-10.txt
AC
1 ms
3364 KiB
04-large-random-2-01.txt
AC
161 ms
101320 KiB
04-large-random-2-02.txt
AC
157 ms
98040 KiB
04-large-random-2-03.txt
AC
163 ms
99780 KiB
04-large-random-2-04.txt
AC
140 ms
96132 KiB
04-large-random-2-05.txt
AC
133 ms
95836 KiB
05-large-random-small-range-01.txt
AC
135 ms
101312 KiB
05-large-random-small-range-02.txt
AC
156 ms
96744 KiB
05-large-random-small-range-03.txt
AC
159 ms
96900 KiB
05-large-random-small-range-04.txt
AC
140 ms
93760 KiB
05-large-random-small-range-05.txt
AC
139 ms
91952 KiB