Submission #66832635
Source Code Expand
#include <algorithm>
#include <array>
#include <bit>
#include <bitset>
#include <cassert>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <ranges>
#include <set>
#include <source_location>
#include <stack>
#include <tuple>
#include <unordered_set>
#include <utility>
constexpr auto makePair(const auto& x1, const auto& x2) {
return std::make_pair(x1, x2);
}
constexpr auto makeTup(const auto&... xs) {
return std::make_tuple(xs...);
}
using i32 = int;
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
using f64 = double;
using f80 = long double;
using f128 = __float128;
constexpr i32 operator"" _i32(u64 v) {
return v;
}
constexpr u32 operator"" _u32(u64 v) {
return v;
}
constexpr i64 operator"" _i64(u64 v) {
return v;
}
constexpr u64 operator"" _u64(u64 v) {
return v;
}
constexpr f64 operator"" _f64(f80 v) {
return v;
}
constexpr f80 operator"" _f80(f80 v) {
return v;
}
using Istream = std::istream;
using Ostream = std::ostream;
using Str = std::string;
template <typename T> using Lt = std::less<T>;
template <typename T> using Gt = std::greater<T>;
template <int n> using BSet = std::bitset<n>;
template <typename T1, typename T2> using Pair = std::pair<T1, T2>;
template <typename... Ts> using Tup = std::tuple<Ts...>;
template <typename T, int N> using Arr = std::array<T, N>;
template <typename... Ts> using Deq = std::deque<Ts...>;
template <typename... Ts> using Set = std::set<Ts...>;
template <typename... Ts> using MSet = std::multiset<Ts...>;
template <typename... Ts> using USet = std::unordered_set<Ts...>;
template <typename... Ts> using UMSet = std::unordered_multiset<Ts...>;
template <typename... Ts> using Map = std::map<Ts...>;
template <typename... Ts> using MMap = std::multimap<Ts...>;
template <typename... Ts> using UMap = std::unordered_map<Ts...>;
template <typename... Ts> using UMMap = std::unordered_multimap<Ts...>;
template <typename... Ts> using Vec = std::vector<Ts...>;
template <typename... Ts> using Stack = std::stack<Ts...>;
template <typename... Ts> using Queue = std::queue<Ts...>;
template <typename T> using MaxHeap = std::priority_queue<T>;
template <typename T> using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>;
template <typename T> using Opt = std::optional<T>;
constexpr auto isBitOn(u64 x, int i) -> bool {
return assert(0 <= i and i < 64), ((x >> i) & 1_u64);
}
constexpr auto isBitOff(u64 x, int i) -> bool {
return assert(0 <= i and i < 64), (not isBitOn(x, i));
}
constexpr auto bitMask(int w) -> u64 {
return assert(0 <= w and w <= 64), (w == 64 ? ~0_u64 : (1_u64 << w) - 1);
}
constexpr auto bitMask(int s, int e) -> u64 {
return assert(0 <= s and s <= e and e <= 64), (bitMask(e - s) << s);
}
constexpr auto floorLog2(u64 x) -> int {
return 63 - std::countl_zero(x);
}
constexpr auto ceilLog2(u64 x) -> int {
return x == 0 ? -1 : std::bit_width(x - 1);
}
constexpr auto order2(u64 x) -> int {
return std::countr_zero(x);
}
template <typename T> constexpr auto chmin(T& x, const T& y, auto comp) -> bool {
return (comp(y, x) ? (x = y, true) : false);
}
template <typename T> constexpr auto chmin(T& x, const T& y) -> bool {
return chmin(x, y, Lt<T>{});
}
template <typename T> constexpr auto chmax(T& x, const T& y, auto comp) -> bool {
return (comp(x, y) ? (x = y, true) : false);
}
template <typename T> constexpr auto chmax(T& x, const T& y) -> bool {
return chmax(x, y, Lt<T>{});
}
template <typename T> constexpr T LIMMIN = std::numeric_limits<T>::min();
template <typename T> constexpr T LIMMAX = std::numeric_limits<T>::max();
template <typename T> constexpr T INF = (LIMMAX<T> - 1) / 2;
template <typename T = i64> constexpr auto TEN(int N) -> T {
return N == 0 ? T{1} : TEN<T>(N - 1) * T{10};
}
constexpr bool LOCAL = false;
template <typename T> constexpr auto OjLocal(T oj, T local) -> T {
return LOCAL ? local : oj;
}
template <typename F> struct Fix : F {
constexpr Fix(F&& f)
: F{std::forward<F>(f)} {
}
template <typename... Args> constexpr auto operator()(Args&&... args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename T> struct FMin {
constexpr FMin() = default;
constexpr auto operator()(const T& x, const T& y) const -> const T& {
return std::ranges::min(x, y);
}
};
template <typename T> struct FMax {
constexpr FMax() = default;
constexpr auto operator()(const T& x, const T& y) const -> const T& {
return std::ranges::max(x, y);
}
};
template <typename T> struct FSum {
constexpr FSum() = default;
constexpr auto operator()(const T& x, const T& y) const -> const T& {
return x + y;
}
};
constexpr auto floorDiv(i64 x, i64 y) -> i64 {
assert(y != 0);
if (y < 0) {
x = -x, y = -y;
}
return x >= 0 ? x / y : (x - y + 1) / y;
}
constexpr auto ceilDiv(i64 x, i64 y) -> i64 {
assert(y != 0);
if (y < 0) {
x = -x, y = -y;
}
return x >= 0 ? (x + y - 1) / y : x / y;
}
class irange {
private:
struct itr {
constexpr itr(i64 start, i64 end, i64 step)
: m_cnt{start}, m_step{step}, m_end{end} {
}
constexpr auto operator!=(const itr&) const -> bool {
return (m_step > 0 ? m_cnt < m_end : m_end < m_cnt);
}
constexpr auto operator*() const -> i64 {
return m_cnt;
}
constexpr auto operator++() -> itr& {
return m_cnt += m_step, *this;
}
i64 m_cnt, m_step, m_end;
};
i64 m_start, m_end, m_step;
public:
constexpr irange(i64 start, i64 end, i64 step = 1)
: m_start{start}, m_end{end}, m_step{step} {
assert(step != 0);
}
constexpr auto begin() const -> itr {
return itr{m_start, m_end, m_step};
}
constexpr auto end() const -> itr {
return itr{m_start, m_end, m_step};
}
};
constexpr auto rep(i64 end) -> irange {
return irange(0, end, 1);
}
constexpr auto per(i64 rend) -> irange {
return irange(rend - 1, -1, -1);
}
auto mdSeqAct(auto& xs, auto f) -> void {
if constexpr (requires(const decltype(xs) xs) { std::ranges::begin(xs); }) {
for (auto& x : xs) {
mdSeqAct(x, f);
}
} else {
f(xs);
}
}
auto mdSeqFold(const auto& xs, auto op) {
if constexpr (requires(const decltype(xs) xs) { std::ranges::begin(xs); }) {
assert(std::size(xs) > 0);
auto ans = mdSeqFold(xs[0], op);
for (int i = 1; i < std::ssize(xs); i++) {
ans = op(ans, mdSeqFold(xs[i], op));
}
return ans;
} else {
return xs;
}
}
auto mdSeqFill(auto& xs, auto x) -> void {
mdSeqAct(xs, [&x](auto& v) {
v = x;
});
}
auto mdSeqPlus(auto& xs, auto x) -> void {
mdSeqAct(xs, [&x](auto& v) {
v += x;
});
}
auto mdSeqSum(const auto& xs) {
return mdSeqFold(xs, [](auto x, auto y) {
return x + y;
});
}
auto mdSeqMin(const auto& xs, auto... args) {
return mdSeqFold(xs, [&args...](auto x, auto y) {
return std::ranges::min(x, y, args...);
});
}
auto mdSeqMax(const auto& xs, auto... args) {
return mdSeqFold(xs, [&args...](auto x, auto y) {
return std::ranges::max(x, y, args...);
});
}
template <typename T> constexpr auto powerMonoid(const T& x, i64 N, const T& e, auto mul) -> T {
assert(N >= 0);
if (N == 0) {
return e;
}
if (N == 1) {
return x;
}
return (N % 2 == 1 ? mul(x, powerMonoid(x, N - 1, e, mul)) : powerMonoid(mul(x, x), N / 2, e, mul));
}
template <typename T> constexpr auto powerMonoid(const T& x, i64 N, const T& e) -> T {
return powerMonoid(x, N, e, std::multiplies<T>{});
}
template <typename T> constexpr auto powerInt(const T& x, i64 N) -> T {
return powerMonoid(x, N, T{1});
}
constexpr auto powerMod(u64 x, i64 N, u64 mod) -> u64 {
assert(0 < mod);
return powerMonoid(x, N, u64{1}, [&](u64 x, u64 y) {
if (mod <= (u64)LIMMAX<u32>) {
return x * y % mod;
} else {
return (u64)((u128)x * y % mod);
}
});
}
template <std::move_constructible T>
requires(std::is_object_v<T> && std::same_as<T, std::remove_cv_t<T>>)
class repeat_view : public std::ranges::view_interface<repeat_view<T>> {
public:
struct Itr {
const T& operator*() const {
return *x;
}
Itr& operator++() {
return (cnt++), *this;
}
Itr operator++(int) {
return {cnt++, *x};
}
bool operator==(const Itr& itr) const {
return cnt == itr.cnt;
}
using difference_type = i64;
using value_type = T;
using iterator_concept = std::input_iterator_tag;
i64 cnt;
const T* x;
};
repeat_view() = default;
repeat_view(const T& x, i64 N)
: m_x{x}, m_N{N} {
}
Itr begin() const {
return {0, &m_x};
}
Itr end() const {
return {m_N, &m_x};
}
i64 size() const {
return m_N;
}
private:
T m_x;
i64 m_N;
};
auto seqConcat(auto& xs1, const auto& xs2) -> void {
std::ranges::copy(xs2, std::back_inserter(xs1));
}
auto seqConcatCopy(const auto& xs1, const auto& xs2) {
auto Ans = xs1;
return seqConcat(Ans, xs2), Ans;
}
auto seqMinInd(const auto& xs, auto... args) -> int {
return std::ranges::min_element(xs, args...) - std::ranges::begin(xs);
}
auto seqMaxInd(const auto& xs, auto... args) -> int {
return std::ranges::max_element(xs, args...) - std::ranges::begin(xs);
}
auto seqReverse(auto& xs) -> void {
std::ranges::reverse(xs);
}
auto seqSort(auto& xs, auto... args) -> void {
std::ranges::sort(xs, args...);
}
template <typename T> auto genVec(int N, auto gen) -> Vec<T> {
Vec<T> ans;
std::ranges::generate_n(std::back_inserter(ans), N, gen);
return ans;
}
template <typename T = int> auto iotaVec(int N, T offset = 0) -> Vec<T> {
Vec<T> ans(N);
std::iota(std::ranges::begin(ans), std::ranges::end(ans), offset);
return ans;
}
auto seqRleVec(const auto& xs) {
using T = std::remove_cvref_t<decltype(xs[0])>;
Vec<Pair<T, int>> Ans;
auto [l, px] = makePair(0, T{});
for (const T& x : xs) {
if (l == 0 or x != px) {
if (l > 0) {
Ans.push_back({px, l});
}
l = 1, px = x;
} else {
l++;
}
}
if (l > 0) {
Ans.push_back({px, l});
}
return Ans;
}
inline Ostream& operator<<(Ostream& os, u128 v) {
Str ans;
if (v == 0) {
ans = "0";
}
while (v) {
ans.push_back('0' + v % 10), v /= 10;
}
std::reverse(ans.begin(), ans.end());
return os << ans;
}
inline Ostream& operator<<(Ostream& os, i128 v) {
bool minus = false;
if (v < 0) {
minus = true, v = -v;
}
return os << (minus ? "-" : "") << (u128)v;
}
auto sortedLbInd(const auto& xs, const auto& x, auto... args) -> int {
return std::ranges::lower_bound(xs, x, args...) - std::ranges::begin(xs);
}
auto sortedUbInd(const auto& xs, const auto& x, auto... args) -> int {
return std::ranges::upper_bound(xs, x, args...) - std::ranges::begin(xs);
}
auto sortedFind(const auto& xs, const auto& x, auto... args) -> int {
const int i = sortedLbInd(xs, x, args...);
if (i < std::ranges::ssize(xs) and xs[i] == x) {
return i;
}
return std::ranges::ssize(xs);
}
constexpr auto extgcd(i64 a, i64 b) -> Pair<i64, i64> {
assert(a != 0 or b != 0);
const i64 A = (((a) < 0) ? -(a) : (a)), B = (((b) < 0) ? -(b) : (b));
if (A == B) {
return {0, (b < 0 ? -1 : 1)};
}
auto [x, y, g] = Fix([&](auto self, i64 a, i64 b) -> Tup<i64, i64, i64> {
assert(0 <= a and a < b);
if (a == 0) {
return {0, 1, b};
}
const auto [px, py, pg] = self(b % a, a);
return {py - (b / a) * px, px, pg};
})(std::ranges::min(A, B), std::ranges::max(A, B));
if (A > B) {
std::ranges::swap(x, y);
}
if (a < 0) {
x = -x;
}
if (b < 0) {
y = -y;
}
if (x < 0) {
x += B / g, y -= (b > 0 ? a / g : -a / g);
}
return {x, y};
}
constexpr auto inverseMod(i64 a, i64 mod) -> i64 {
return assert(mod > 0 and a % mod != 0), extgcd(a % mod, mod).first;
}
template <u64 Mod, bool dynamic = false>
requires(dynamic or (0 < Mod and Mod <= (u64)LIMMAX<i64>))
class modint {
public:
static constexpr auto isDynamic() -> bool {
return dynamic;
}
static constexpr auto mod() -> u64 {
if constexpr (dynamic) {
return modRef();
} else {
return Mod;
}
}
static constexpr auto setMod(u64 m) -> void
requires dynamic
{
assert(0 < m and m <= LIMMAX<i64>);
modRef() = m, sinvRef() = factRef() = ifactRef() = {1, 1};
}
constexpr modint()
: m_val{0} {
}
constexpr modint(i64 v)
: m_val{normll(v)} {
}
constexpr friend auto operator-(const modint& x) -> modint {
return modint{0} - x;
}
constexpr friend auto operator+=(modint& x1, const modint& x2) -> modint& {
return x1.m_val = norm(x1.m_val + x2.m_val), x1;
}
constexpr friend auto operator-=(modint& x1, const modint& x2) -> modint& {
return x1.m_val = norm(x1.m_val + mod() - x2.m_val), x1;
}
constexpr friend auto operator*=(modint& x1, const modint& x2) -> modint& {
if constexpr (dynamic) {
if (mod() <= (u64)LIMMAX<u32>) {
return (x1.m_val *= x2.m_val) %= mod(), x1;
} else {
return x1.m_val = (u64)((u128)x1.m_val * (u128)x2.m_val % (u128)mod()), x1;
}
} else {
if constexpr (Mod <= (u64)LIMMAX<u32>) {
return (x1.m_val *= x2.m_val) %= mod(), x1;
} else {
return x1.m_val = (u64)((u128)x1.m_val * (u128)x2.m_val % (u128)mod()), x1;
}
}
}
constexpr friend auto operator/=(modint& x1, const modint& x2) -> modint& {
return x1 *= x2.inv();
}
constexpr friend auto operator+(const modint& x1, const modint& x2) -> modint {
auto ans = x1;
return ans += x2;
}
constexpr friend auto operator-(const modint& x1, const modint& x2) -> modint {
auto ans = x1;
return ans -= x2;
}
constexpr friend auto operator*(const modint& x1, const modint& x2) -> modint {
auto ans = x1;
return ans *= x2;
}
constexpr friend auto operator/(const modint& x1, const modint& x2) -> modint {
auto ans = x1;
return ans /= x2;
}
constexpr friend auto operator<=>(const modint& x1, const modint& x2) = default;
friend auto operator>>(Istream& is, modint& x) -> Istream& {
i64 v;
return is >> v, x = v, is;
}
friend auto operator<<(Ostream& os, const modint& x) -> Ostream& {
return os << x.m_val;
}
constexpr auto val() const -> u64 {
return m_val;
}
constexpr auto pow(i64 n) const -> modint {
return powerInt(*this, n);
}
constexpr auto inv() const -> modint {
return inverseMod(m_val, mod());
}
static auto sinv(int n) -> modint {
assert(1 <= n);
auto& is = sinvRef();
for (int i : irange((int)is.size(), n + 1)) {
is.push_back(-is[mod() % i] * (mod() / i));
}
return is[n];
}
static auto fact(int n) -> modint {
assert(0 <= n);
auto& fs = factRef();
for (int i : irange((int)fs.size(), n + 1)) {
fs.push_back(fs.back() * i);
}
return fs[n];
}
static auto ifact(int n) -> modint {
auto& ifs = ifactRef();
for (int i : irange((int)ifs.size(), n + 1)) {
ifs.push_back(ifs.back() * sinv(i));
}
return ifs[n];
}
static auto perm(int n, int k) -> modint {
return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k);
}
static auto comb(int n, int k) -> modint {
return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k);
}
private:
static auto modRef() -> u64& requires dynamic
{
static u64 mod_ = 0;
return mod_;
}
static auto sinvRef() -> Vec<modint>& {
static Vec<modint> is{1, 1};
return is;
}
static auto factRef() -> Vec<modint>& {
static Vec<modint> fs{1, 1};
return fs;
}
static auto ifactRef() -> Vec<modint>& {
static Vec<modint> ifs{1, 1};
return ifs;
}
static constexpr auto norm(u64 x) -> u64 {
return x < mod() ? x : x - mod();
}
static constexpr auto normll(i64 x) -> u64 {
x %= (i64)mod();
return norm(u64(x < 0 ? x + (i64)mod() : x));
}
u64 m_val;
};
using modint_1000000007 = modint<1000000007, false>;
using modint_998244353 = modint<998244353, false>;
template <u64 id>
requires(id < (u64)LIMMAX<i64>)
using modint_dynamic = modint<id, true>;
template <u64 id>
requires(id < (u64)LIMMAX<i64>)
using modint_dynamic_reserved = modint<id | (1_u64 << 63), true>;
class Printer {
public:
Printer(Ostream& os = std::cout)
: m_os{os} {
m_os << std::fixed << std::setprecision(15);
}
int operator()(const auto&... args) {
return dump(args...), 0;
}
int ln(const auto&... args) {
return dump(args...), m_os << '\n', 0;
}
int el(const auto&... args) {
return dump(args...), m_os << std::endl, 0;
}
private:
void dump(const auto& v) {
m_os << v;
}
int dump(const auto& v, const auto&... args) {
return dump(v), m_os << ' ', dump(args...), 0;
}
template <typename... Args> void dump(const Vec<Args...>& vs) {
for (Str delim = ""; const auto& v : vs) {
m_os << std::exchange(delim, " "), dump(v);
}
}
Ostream& m_os;
};
inline Printer out;
template <typename Engine> class RNG {
public:
using result_type = typename Engine::result_type;
using U = result_type;
static constexpr auto min() -> U {
return Engine::min();
}
static constexpr auto max() -> U {
return Engine::max();
}
RNG()
: RNG(std::random_device{}()) {
}
RNG(U seed)
: m_rng(seed) {
}
auto operator()() -> U {
return m_rng();
}
template <typename T>
requires std::is_integral_v<T>
auto val(T min, T max) -> T {
return std::uniform_int_distribution<T>(min, max)(m_rng);
}
template <typename T> auto vec(int N, T min, T max) -> Vec<T> {
return genVec<T>(N, [&]() {
return val<T>(min, max);
});
}
private:
Engine m_rng;
};
inline RNG<std::mt19937> rng;
inline RNG<std::mt19937_64> rng64;
class Scanner {
public:
Scanner(Istream& is = std::cin)
: m_is{is} {
m_is.tie(nullptr)->sync_with_stdio(false);
}
template <typename T> auto val() -> T {
T v;
return m_is >> v, v;
}
template <typename T> auto val(T offset) -> T {
return val<T>() - offset;
}
template <typename T> auto vec(int N) -> Vec<T> {
return genVec<T>(N, [&]() {
return val<T>();
});
}
template <typename T> auto vec(int N, T offset) -> Vec<T> {
return genVec<T>(N, [&]() {
return val<T>(offset);
});
}
template <typename T> auto vvec(int n, int m) -> Vec<Vec<T>> {
return genVec<Vec<T>>(n, [&]() {
return vec<T>(m);
});
}
template <typename T> auto vvec(int n, int m, const T offset) -> Vec<Vec<T>> {
return genVec<Vec<T>>(n, [&]() {
return vec<T>(m, offset);
});
}
template <typename... Args> auto tup() {
return Tup<Args...>{val<Args>()...};
}
template <typename... Args> auto tup(Args... offsets) {
return Tup<Args...>{val<Args>(offsets)...};
}
private:
Istream& m_is;
};
inline Scanner in;
int main() {
auto solve = [&]() {
const auto N = in.val<int>();
const auto As = in.vec<i64>(N);
const auto Bs = in.vec<i64>(N);
for (int i : irange(1, N)) {
i64 C0 = As[1], Ci = -As[0];
i64 D = As[0] * Bs[1] - As[1] * Bs[0];
if (D == 0) {
continue;
}
if (D < 0) {
C0 = -C0, Ci = -Ci;
D = -D;
}
const i64 C = (Bs[0] + D - 1) / D;
Vec<i64> Xs(N, 0);
Xs[0] = 1 + C * C0, Xs[i] = C * Ci;
out.ln("Yes");
out.ln(Xs);
return 0;
}
out.ln("No");
return 0;
};
const auto T = in.val<int>();
for (auto _temp_name_0 [[maybe_unused]] : rep(T)) {
solve();
}
return 0;
}
Submission Info
Submission Time |
|
Task |
A - Dot Product |
User |
pachicobue |
Language |
C++ 20 (gcc 12.2) |
Score |
0 |
Code Size |
21950 Byte |
Status |
WA |
Exec Time |
45 ms |
Memory |
7656 KiB |
Judge Result
Set Name |
Sample |
All |
Score / Max Score |
0 / 0 |
0 / 500 |
Status |
|
|
Set Name |
Test Cases |
Sample |
00_sample_00.txt |
All |
00_sample_00.txt, 01_handmade_00.txt, 01_handmade_01.txt, 01_handmade_02.txt, 01_handmade_03.txt, 01_handmade_04.txt, 01_handmade_05.txt, 01_handmade_06.txt, 01_handmade_07.txt, 01_handmade_08.txt, 01_handmade_09.txt, 01_handmade_10.txt, 01_handmade_11.txt, 01_handmade_12.txt, 01_handmade_13.txt, 01_handmade_14.txt, 01_handmade_15.txt, 01_handmade_16.txt, 01_handmade_17.txt, 01_handmade_18.txt, 01_handmade_19.txt, 01_handmade_20.txt, 01_handmade_21.txt, 01_handmade_22.txt, 01_handmade_23.txt, 01_handmade_24.txt, 01_handmade_25.txt, 02_No_00.txt, 02_No_01.txt, 02_No_02.txt, 02_No_03.txt, 03_Yes_00.txt, 03_Yes_01.txt, 03_Yes_02.txt, 03_Yes_03.txt, 03_Yes_04.txt, 03_Yes_05.txt, 03_Yes_06.txt, 03_Yes_07.txt, 04_YesNo_00.txt, 04_YesNo_01.txt, 04_YesNo_02.txt, 04_YesNo_03.txt, 04_YesNo_04.txt, 04_YesNo_05.txt |
Case Name |
Status |
Exec Time |
Memory |
00_sample_00.txt |
AC |
5 ms |
3408 KiB |
01_handmade_00.txt |
WA |
2 ms |
3508 KiB |
01_handmade_01.txt |
WA |
42 ms |
3512 KiB |
01_handmade_02.txt |
WA |
42 ms |
3396 KiB |
01_handmade_03.txt |
WA |
43 ms |
3512 KiB |
01_handmade_04.txt |
WA |
42 ms |
3512 KiB |
01_handmade_05.txt |
WA |
42 ms |
3512 KiB |
01_handmade_06.txt |
WA |
40 ms |
3616 KiB |
01_handmade_07.txt |
WA |
39 ms |
3508 KiB |
01_handmade_08.txt |
WA |
42 ms |
3464 KiB |
01_handmade_09.txt |
WA |
41 ms |
3608 KiB |
01_handmade_10.txt |
WA |
39 ms |
3508 KiB |
01_handmade_11.txt |
WA |
39 ms |
3452 KiB |
01_handmade_12.txt |
WA |
42 ms |
3608 KiB |
01_handmade_13.txt |
WA |
41 ms |
3512 KiB |
01_handmade_14.txt |
WA |
45 ms |
3444 KiB |
01_handmade_15.txt |
WA |
45 ms |
3512 KiB |
01_handmade_16.txt |
WA |
45 ms |
3400 KiB |
01_handmade_17.txt |
WA |
45 ms |
3424 KiB |
01_handmade_18.txt |
WA |
41 ms |
3528 KiB |
01_handmade_19.txt |
WA |
45 ms |
3568 KiB |
01_handmade_20.txt |
WA |
39 ms |
3456 KiB |
01_handmade_21.txt |
WA |
41 ms |
3360 KiB |
01_handmade_22.txt |
WA |
32 ms |
3516 KiB |
01_handmade_23.txt |
WA |
30 ms |
3420 KiB |
01_handmade_24.txt |
WA |
31 ms |
3460 KiB |
01_handmade_25.txt |
AC |
25 ms |
3524 KiB |
02_No_00.txt |
AC |
35 ms |
3508 KiB |
02_No_01.txt |
AC |
29 ms |
3508 KiB |
02_No_02.txt |
AC |
21 ms |
5472 KiB |
02_No_03.txt |
AC |
19 ms |
5492 KiB |
03_Yes_00.txt |
AC |
44 ms |
3608 KiB |
03_Yes_01.txt |
AC |
44 ms |
3512 KiB |
03_Yes_02.txt |
AC |
28 ms |
6240 KiB |
03_Yes_03.txt |
AC |
28 ms |
5884 KiB |
03_Yes_04.txt |
WA |
20 ms |
7656 KiB |
03_Yes_05.txt |
WA |
20 ms |
7332 KiB |
03_Yes_06.txt |
WA |
33 ms |
3448 KiB |
03_Yes_07.txt |
WA |
27 ms |
3500 KiB |
04_YesNo_00.txt |
WA |
33 ms |
3616 KiB |
04_YesNo_01.txt |
WA |
27 ms |
3516 KiB |
04_YesNo_02.txt |
WA |
33 ms |
3468 KiB |
04_YesNo_03.txt |
WA |
27 ms |
3572 KiB |
04_YesNo_04.txt |
WA |
33 ms |
3452 KiB |
04_YesNo_05.txt |
WA |
28 ms |
3460 KiB |