Submission #64595327


Source Code Expand

//#define _GLIBCXX_DEBUG
// C++ includes used for precompiling -*- C++ -*-

// Copyright (C) 2003-2019 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file stdc++.h
 *  This is an implementation file for a precompiled header.
 */

// 17.4.1.2 Headers

// C
#include <cassert>
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <ciso646>
#include <climits>
#include <clocale>
#include <cmath>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cwchar>
#include <cwctype>

#include <ccomplex>
#include <cfenv>
#include <cinttypes>
#include <cstdalign>
#include <cstdbool>
#include <cstdint>
#include <ctgmath>
#include <cuchar>

// C++
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <locale>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <typeinfo>
#include <utility>
#include <valarray>
#include <vector>

#include <array>
#include <atomic>
#include <chrono>
#include <codecvt>
#include <condition_variable>
#include <forward_list>
#include <future>
#include <initializer_list>
#include <mutex>
#include <random>
#include <ratio>
#include <regex>
#include <scoped_allocator>
#include <system_error>
#include <thread>
#include <tuple>
#include <typeindex>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>

#include <shared_mutex>

#include <any>
#include <charconv>
// #include <execution>
#include <filesystem>
#include <optional>
#include <memory_resource>
#include <string_view>
#include <variant>

#include <bit>
// #include <compare>
// #include <span>
// #include <syncstream>
#include <version>



#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>


#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

template <class mint,
          int g = internal::primitive_root<mint::mod()>,
          internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
    static constexpr int rank2 = bsf_constexpr(mint::mod() - 1);
    std::array<mint, rank2 + 1> root;   // root[i]^(2^i) == 1
    std::array<mint, rank2 + 1> iroot;  // root[i] * iroot[i] == 1

    std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
    std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;

    std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
    std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;

    fft_info() {
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        iroot[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            iroot[i] = iroot[i + 1] * iroot[i + 1];
        }

        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 2; i++) {
                rate2[i] = root[i + 2] * prod;
                irate2[i] = iroot[i + 2] * iprod;
                prod *= iroot[i + 2];
                iprod *= root[i + 2];
            }
        }
        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 3; i++) {
                rate3[i] = root[i + 3] * prod;
                irate3[i] = iroot[i + 3] * iprod;
                prod *= iroot[i + 3];
                iprod *= root[i + 3];
            }
        }
    }
};

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static const fft_info<mint> info;

    int len = 0;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len < h) {
        if (h - len == 1) {
            int p = 1 << (h - len - 1);
            mint rot = 1;
            for (int s = 0; s < (1 << len); s++) {
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p] * rot;
                    a[i + offset] = l + r;
                    a[i + offset + p] = l - r;
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate2[bsf(~(unsigned int)(s))];
            }
            len++;
        } else {
            int p = 1 << (h - len - 2);
            mint rot = 1, imag = info.root[2];
            for (int s = 0; s < (1 << len); s++) {
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto mod2 = 1ULL * mint::mod() * mint::mod();
                    auto a0 = 1ULL * a[i + offset].val();
                    auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
                    auto a1na3imag =
                        1ULL * mint(a1 + mod2 - a3).val() * imag.val();
                    auto na2 = mod2 - a2;
                    a[i + offset] = a0 + a2 + a1 + a3;
                    a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
                    a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
                    a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate3[bsf(~(unsigned int)(s))];
            }
            len += 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static const fft_info<mint> info;

    int len = h;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len) {
        if (len == 1) {
            int p = 1 << (h - len);
            mint irot = 1;
            for (int s = 0; s < (1 << (len - 1)); s++) {
                int offset = s << (h - len + 1);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p];
                    a[i + offset] = l + r;
                    a[i + offset + p] =
                        (unsigned long long)(mint::mod() + l.val() - r.val()) *
                        irot.val();
                    ;
                }
                if (s + 1 != (1 << (len - 1)))
                    irot *= info.irate2[bsf(~(unsigned int)(s))];
            }
            len--;
        } else {
            int p = 1 << (h - len);
            mint irot = 1, iimag = info.iroot[2];
            for (int s = 0; s < (1 << (len - 2)); s++) {
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                int offset = s << (h - len + 2);
                for (int i = 0; i < p; i++) {
                    auto a0 = 1ULL * a[i + offset + 0 * p].val();
                    auto a1 = 1ULL * a[i + offset + 1 * p].val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val();

                    auto a2na3iimag =
                        1ULL *
                        mint((mint::mod() + a2 - a3) * iimag.val()).val();

                    a[i + offset] = a0 + a1 + a2 + a3;
                    a[i + offset + 1 * p] =
                        (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
                    a[i + offset + 2 * p] =
                        (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
                        irot2.val();
                    a[i + offset + 3 * p] =
                        (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
                        irot3.val();
                }
                if (s + 1 != (1 << (len - 2)))
                    irot *= info.irate3[bsf(~(unsigned int)(s))];
            }
            len -= 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
                                    const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    std::vector<mint> ans(n + m - 1);
    if (n < m) {
        for (int j = 0; j < m; j++) {
            for (int i = 0; i < n; i++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    } else {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    }
    return ans;
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    int z = 1 << internal::ceil_pow2(n + m - 1);
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
                              const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}

template <unsigned int mod = 998244353,
          class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;
    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(move(a2), move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <vector>

namespace atcoder {

struct dsu {
  public:
    dsu() : _n(0) {}
    explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}

    int merge(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool same(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
            std::remove_if(result.begin(), result.end(),
                           [&](const std::vector<int>& v) { return v.empty(); }),
            result.end());
        return result;
    }

  private:
    int _n;
    std::vector<int> parent_or_size;
};

}  // namespace atcoder


#include <cassert>
#include <vector>


namespace atcoder {

template <class T> struct fenwick_tree {
    using U = internal::to_unsigned_t<T>;

  public:
    fenwick_tree() : _n(0) {}
    explicit fenwick_tree(int n) : _n(n), data(n) {}

    void add(int p, T x) {
        assert(0 <= p && p < _n);
        p++;
        while (p <= _n) {
            data[p - 1] += U(x);
            p += p & -p;
        }
    }

    T sum(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        return sum(r) - sum(l);
    }

  private:
    int _n;
    std::vector<U> data;

    U sum(int r) {
        U s = 0;
        while (r > 0) {
            s += data[r - 1];
            r -= r & -r;
        }
        return s;
    }
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>


namespace atcoder {

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>


namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
    assert(0 <= n && 1 <= m);
    if (m == 1) return 0;
    internal::barrett bt((unsigned int)(m));
    unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
    while (n) {
        if (n & 1) r = bt.mul(r, y);
        y = bt.mul(y, y);
        n >>= 1;
    }
    return r;
}

long long inv_mod(long long x, long long m) {
    assert(1 <= m);
    auto z = internal::inv_gcd(x, m);
    assert(z.first == 1);
    return z.second;
}

std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
    assert(r.size() == m.size());
    int n = int(r.size());
    long long r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }


        long long g, im;
        std::tie(g, im) = internal::inv_gcd(m0, m1);

        long long u1 = (m1 / g);
        if ((r1 - r0) % g) return {0, 0};

        long long x = (r1 - r0) / g % u1 * im % u1;

        r0 += x * m0;
        m0 *= u1;  // -> lcm(m0, m1)
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
    assert(0 <= n && n < (1LL << 32));
    assert(1 <= m && m < (1LL << 32));
    unsigned long long ans = 0;
    if (a < 0) {
        unsigned long long a2 = internal::safe_mod(a, m);
        ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
        a = a2;
    }
    if (b < 0) {
        unsigned long long b2 = internal::safe_mod(b, m);
        ans -= 1ULL * n * ((b2 - b) / m);
        b = b2;
    }
    return ans + internal::floor_sum_unsigned(n, m, a, b);
}

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>


#include <vector>

namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

template <class Cap> struct mf_graph {
  public:
    mf_graph() : _n(0) {}
    explicit mf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap});
        g[to].push_back(_edge{from, from_id, 0});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }

    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;

        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                for (auto e : g[v]) {
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) return res;
            }
            level[v] = _n;
            return res;
        };

        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            Cap f = dfs(dfs, t, flow_limit - flow);
            if (!f) break;
            flow += f;
        }
        return flow;
    }

    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }

  private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>


#include <algorithm>
#include <utility>
#include <vector>

namespace atcoder {
namespace internal {

template <class E> struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    explicit csr(int n, const std::vector<std::pair<int, E>>& edges)
        : start(n + 1), elist(edges.size()) {
        for (auto e : edges) {
            start[e.first + 1]++;
        }
        for (int i = 1; i <= n; i++) {
            start[i] += start[i - 1];
        }
        auto counter = start;
        for (auto e : edges) {
            elist[counter[e.first]++] = e.second;
        }
    }
};

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    explicit mcf_graph(int n) : _n(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(_edges.size());
        _edges.push_back({from, to, cap, 0, cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        int m = int(_edges.size());
        std::vector<int> edge_idx(m);

        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
                elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
            }
            auto _g = internal::csr<_edge>(_n, elist);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();

        auto result = slope(g, s, t, flow_limit);

        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }

        return result;
    }

  private:
    int _n;
    std::vector<edge> _edges;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
                                            int s,
                                            int t,
                                            Cap flow_limit) {

        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; i++) {
                dual_dist[i].second = std::numeric_limits<Cost>::max();
            }
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();

            size_t heap_r = 0;

            dual_dist[s].second = 0;
            que_min.push_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        heap_r++;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    heap_r--;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) {
                            que_min.push_back(e.to);
                        } else {
                            que.push_back(Q{dist_to, e.to});
                        }
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            }
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto& e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <vector>


#include <algorithm>
#include <utility>
#include <vector>


namespace atcoder {
namespace internal {

struct scc_graph {
  public:
    explicit scc_graph(int n) : _n(n) {}

    int num_vertices() { return _n; }

    void add_edge(int from, int to) { edges.push_back({from, {to}}); }

    std::pair<int, std::vector<int>> scc_ids() {
        auto g = csr<edge>(_n, edges);
        int now_ord = 0, group_num = 0;
        std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
        visited.reserve(_n);
        auto dfs = [&](auto self, int v) -> void {
            low[v] = ord[v] = now_ord++;
            visited.push_back(v);
            for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                auto to = g.elist[i].to;
                if (ord[to] == -1) {
                    self(self, to);
                    low[v] = std::min(low[v], low[to]);
                } else {
                    low[v] = std::min(low[v], ord[to]);
                }
            }
            if (low[v] == ord[v]) {
                while (true) {
                    int u = visited.back();
                    visited.pop_back();
                    ord[u] = _n;
                    ids[u] = group_num;
                    if (u == v) break;
                }
                group_num++;
            }
        };
        for (int i = 0; i < _n; i++) {
            if (ord[i] == -1) dfs(dfs, i);
        }
        for (auto& x : ids) {
            x = group_num - 1 - x;
        }
        return {group_num, ids};
    }

    std::vector<std::vector<int>> scc() {
        auto ids = scc_ids();
        int group_num = ids.first;
        std::vector<int> counts(group_num);
        for (auto x : ids.second) counts[x]++;
        std::vector<std::vector<int>> groups(ids.first);
        for (int i = 0; i < group_num; i++) {
            groups[i].reserve(counts[i]);
        }
        for (int i = 0; i < _n; i++) {
            groups[ids.second[i]].push_back(i);
        }
        return groups;
    }

  private:
    int _n;
    struct edge {
        int to;
    };
    std::vector<std::pair<int, edge>> edges;
};

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

struct scc_graph {
  public:
    scc_graph() : internal(0) {}
    explicit scc_graph(int n) : internal(n) {}

    void add_edge(int from, int to) {
        int n = internal.num_vertices();
        assert(0 <= from && from < n);
        assert(0 <= to && to < n);
        internal.add_edge(from, to);
    }

    std::vector<std::vector<int>> scc() { return internal.scc(); }

  private:
    internal::scc_graph internal;
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <vector>


namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>

namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n);
    std::iota(sa.begin(), sa.end(), 0);
    std::sort(sa.begin(), sa.end(), [&](int l, int r) {
        if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++;
            r++;
        }
        return l == n;
    });
    return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n), rnk = s, tmp(n);
    std::iota(sa.begin(), sa.end(), 0);
    for (int k = 1; k < n; k *= 2) {
        auto cmp = [&](int x, int y) {
            if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
            int rx = x + k < n ? rnk[x + k] : -1;
            int ry = y + k < n ? rnk[y + k] : -1;
            return rx < ry;
        };
        std::sort(sa.begin(), sa.end(), cmp);
        tmp[sa[0]] = 0;
        for (int i = 1; i < n; i++) {
            tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        std::swap(tmp, rnk);
    }
    return sa;
}

template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
    int n = int(s.size());
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    }
    if (n < THRESHOLD_NAIVE) {
        return sa_naive(s);
    }
    if (n < THRESHOLD_DOUBLING) {
        return sa_doubling(s);
    }

    std::vector<int> sa(n);
    std::vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--) {
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    }
    std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i]) {
            sum_s[s[i]]++;
        } else {
            sum_l[s[i] + 1]++;
        }
    }
    for (int i = 0; i <= upper; i++) {
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];
    }

    auto induce = [&](const std::vector<int>& lms) {
        std::fill(sa.begin(), sa.end(), -1);
        std::vector<int> buf(upper + 1);
        std::copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        sa[buf[s[n - 1]]++] = n - 1;
        for (int i = 0; i < n; i++) {
            int v = sa[i];
            if (v >= 1 && !ls[v - 1]) {
                sa[buf[s[v - 1]]++] = v - 1;
            }
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (int i = n - 1; i >= 0; i--) {
            int v = sa[i];
            if (v >= 1 && ls[v - 1]) {
                sa[--buf[s[v - 1] + 1]] = v - 1;
            }
        }
    };

    std::vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms_map[i] = m++;
        }
    }
    std::vector<int> lms;
    lms.reserve(m);
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms.push_back(i);
        }
    }

    induce(lms);

    if (m) {
        std::vector<int> sorted_lms;
        sorted_lms.reserve(m);
        for (int v : sa) {
            if (lms_map[v] != -1) sorted_lms.push_back(v);
        }
        std::vector<int> rec_s(m);
        int rec_upper = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (int i = 1; i < m; i++) {
            int l = sorted_lms[i - 1], r = sorted_lms[i];
            int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
            int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
            bool same = true;
            if (end_l - l != end_r - r) {
                same = false;
            } else {
                while (l < end_l) {
                    if (s[l] != s[r]) {
                        break;
                    }
                    l++;
                    r++;
                }
                if (l == n || s[l] != s[r]) same = false;
            }
            if (!same) rec_upper++;
            rec_s[lms_map[sorted_lms[i]]] = rec_upper;
        }

        auto rec_sa =
            sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

        for (int i = 0; i < m; i++) {
            sorted_lms[i] = lms[rec_sa[i]];
        }
        induce(sorted_lms);
    }
    return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
    assert(0 <= upper);
    for (int d : s) {
        assert(0 <= d && d <= upper);
    }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return internal::sa_is(s2, 255);
}

template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) {
        rnk[sa[i]] = i;
    }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return lcp_array(s2, sa);
}

template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
    int n = int(s.size());
    if (n == 0) return {};
    std::vector<int> z(n);
    z[0] = 0;
    for (int i = 1, j = 0; i < n; i++) {
        int& k = z[i];
        k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
        while (i + k < n && s[k] == s[i + k]) k++;
        if (j + z[j] < i + z[i]) j = i;
    }
    z[0] = n;
    return z;
}

std::vector<int> z_algorithm(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return z_algorithm(s2);
}

}  // namespace atcoder


#include <cassert>
#include <vector>


namespace atcoder {

struct two_sat {
  public:
    two_sat() : _n(0), scc(0) {}
    explicit two_sat(int n) : _n(n), _answer(n), scc(2 * n) {}

    void add_clause(int i, bool f, int j, bool g) {
        assert(0 <= i && i < _n);
        assert(0 <= j && j < _n);
        scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0));
        scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0));
    }
    bool satisfiable() {
        auto id = scc.scc_ids().second;
        for (int i = 0; i < _n; i++) {
            if (id[2 * i] == id[2 * i + 1]) return false;
            _answer[i] = id[2 * i] < id[2 * i + 1];
        }
        return true;
    }
    std::vector<bool> answer() { return _answer; }

  private:
    int _n;
    std::vector<bool> _answer;
    internal::scc_graph scc;
};

}  // namespace atcoder

using namespace atcoder;

#pragma GCC target("avx2,fma")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
using namespace std;
using ll = long long;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vvvvl = vector<vvvl>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vvvvi = vector<vvvi>;
typedef pair<ll, ll> P;
typedef pair<long double, ll> Pd;
typedef tuple<ll, ll, ll> PP;
typedef tuple<ll, ll, ll, ll> PPP;
using vs = vector<string>;
using vvs = vector<vs>;
using vvvs = vector<vvs>;
using vp = vector<P>;
using vvp = vector<vp>;
using vvvp = vector<vvp>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vvvb = vector<vvb>;
#define lb(v, k) (lower_bound(all(v), (k)) - v.begin())
#define ub(v, k) (upper_bound(all(v), (k)) - v.begin())
#define eb emplace_back
#define fi first
#define se second
#define pq(T) priority_queue<T>
#define pqr(T) priority_queue<T, vector<T>, greater<T>>
#define pcount(i) __builtin_popcountll(i)
#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)
#define repi(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++)
#define all(a) (a).begin(), (a).end()
#define rll(a) (a).rbegin(), (a).rend()
#define double long double
#define yesno(i) if(i)cout<<"yes"<<endl;else cout<<"no"<<endl;
#define YesNo(i) if(i)cout<<"Yes"<<endl;else cout<<"No"<<endl;
#define YESNO(i) if(i)cout<<"YES"<<endl;else cout<<"NO"<<endl;
#define pb push_back
#define cinvec(x)                     \
    for (ll hfuaig = 0; hfuaig < x.size(); hfuaig++) \
    {                                 \
        cin >> x.at(hfuaig);               \
    }
#define coutvece(x)                   \
    for (ll hfuaig = 0; hfuaig < x.size(); hfuaig++) \
    {                                 \
        cout << x.at(hfuaig) << endl;      \
    }
#define coutvec(x)                    \
    for (ll hfuaig = 0; hfuaig < x.size(); hfuaig++) \
    {                                 \
        cout << x.at(hfuaig) << ' ';       \
    }\
    cout << endl;
vl dx = {-1,1 ,0 ,0 ,-1, 1, -1, 1};
vl dy = {0 ,0 ,-1,1 ,-1, -1, 1, 1};
pair<ll, ll> dxy(pair<ll, ll> a, ll i){
    return make_pair(a.fi + dx[i], a.se + dy[i]);
}
template <typename T>
bool chmax(T &a, const T& b){
    if(a < b){
        a = b;
        return true;
    }
    return false;
}
template <typename T>
bool chmin(T &a, const T& b){
    if(a > b){
        a = b;
        return true;
    }
    return false;
}
ll mod = 998244353;
int modd = 998244353;
const ll Mod = 1000000007;
const ll inf = 999999999999999999LL;
const int INF = 999999999;
using mint = modint998244353;
using mmint = modint1000000007;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
using vvvvm = vector<vvvm>;
using vvvvvm = vector<vvvvm>;
using vmm = vector<mmint>;
using vvmm = vector<vmm>;
using vvvmm = vector<vvmm>;
ll mygcd(ll A, ll B){
    if(A == -1)return B;
    if(B == -1)return A;
    if(B == 0 || A == 0){
        return A ^ B;
    }
    if(A % B == 0){
        return B;
    }
    else{
        return mygcd(B, A % B);
    }
}
ll mylcm(ll A, ll B){
    if(A == -1){
        return B;
    }
    if(B == -1){
        return A;
    }
    return A  / mygcd(A, B) * B;
}
typedef struct Point_Coordinates {
    double x, y;
} point;
typedef struct Point_Coordinatesll {
    ll x, y;
} pointl;
long long modpow(long long a, long long n, long long mo) {
    long long res = 1;
    while (n > 0) {
        if (n & 1) res = res * a % mo;
        a = a * a % mo;
        n >>= 1;
    }
    return res % mo;
}
//円の位置関係
bool isd(double a, double b, double c){
    if(c > (a + b) * (a + b)){
        return false;
    }
    if(c == (a + b) * (a + b)){
        return true;
    }
    if(abs(a - b) * abs(a - b) < c && c < (a + b) * (a + b)){
        return true;
    }
    if(c == abs(a - b) * abs(a - b)){
        return true;
    }
    if(c < abs(a - b) * abs(a - b)){
        return false;
    }
    return true;
}
const int MAX = 100000;
int MOD1 = mod;
ll fact[MAX], inv_fact[MAX], inv[MAX], perm[MAX];
void init() {
    MOD1 = mod;
    // 初期値設定と1はじまりインデックスに直す
    fact[0] = 1;
    fact[1] = 1;
    inv[0] = 1;
    inv[1] = 1;
    inv_fact[0] = 1;
    inv_fact[1] = 1;
    // メモの計算
    repi(i, 2, MAX){
        // 階乗
        fact[i] = fact[i - 1] * i % MOD1;
        // 逆元
        inv[i] = MOD1 - inv[MOD1%i] * (MOD1 / i) % MOD1;
        // 逆元の階乗
        inv_fact[i] = inv_fact[i - 1] * inv[i] % MOD1;
    }
    perm[0] = 1;
    rep(i, MAX - 1){
        perm[i + 1] = ((ll)(i + 1) * perm[i]) % MOD1;
    }
}
ll nck(int n, int k) {
    if (n < k) return 0; // 例外処理
    if (n < 0 || k < 0) return 0; // 例外処理
    if(k == 0)return 1;
    ll x = fact[n]; // n!の計算
    ll y = inv_fact[n-k]; // (n-k)!の計算
    ll z = inv_fact[k]; // k!の計算
    return x * ((y * z) % MOD1) % MOD1; //二項係数の計算
}
ll npk(ll n, ll k){
    return (nck(n, k) * perm[k]) % MOD1;
}
ll nhk(ll n, ll k){
    return nck(n + k - 1, k);
}
struct graph{
    ll N;
    vvp G;
    vl dis;
    vl prev;
    graph(ll n) : N(n){
        G.resize(n);
    }
    void push(ll a, ll b){
        G[a].push_back({b, 1});
    }
    void push(ll a, ll b, ll c){
        G[a].push_back({b, c});
    }
    vl dijkstra(ll i){
        dis.assign(N, inf);
        prev.assign(N, -1);
        priority_queue<P, vector<P>, greater<P>> piq;  // 「仮の最短距離, 頂点」が小さい順に並ぶ
        dis[i] = 0;
        piq.emplace(dis[i], i);
        while (!piq.empty()) {
            P p = piq.top();
            piq.pop();
            ll v = p.second;
            if (dis[v] < p.first) {  // 最短距離で無ければ無視
                continue;
            }
            for (auto &e : G[v]) {
                if (dis[e.fi] > dis[v] + e.se) {  // 最短距離候補なら priority_queue に追加
                    dis[e.fi] = dis[v] + e.se;
                    prev[e.fi] = v;
                    piq.emplace(dis[e.fi], e.fi);
                }
            }
        }
        return dis;
    }
    vl get_path(ll t){
        vl path;
        for (ll cur = t; cur != -1; cur = prev[cur]) {
            path.push_back(cur);
        }
        reverse(path.begin(), path.end()); // 逆順なのでひっくり返す
        return path;
    }
};

struct BIT {
  private:
   vector<int> bit;
   ll N;
 
  public:
   BIT(ll size) {
     N = size;
     bit.resize(N + 1, 0);
   }
 
   // 一点更新です
   void add(ll a, ll w) {
     for (int x = a; x <= N; x += x & -x) bit[x] += w;
   }
 
   // 1~Nまでの和を求める。
   ll sum(ll a) {
     ll ret = 0;
     for (ll x = a; x > 0; x -= x & -x) ret += bit[x];
     return ret;
   }
 };
//転倒数ライブラリ
ll numfalls(vl &A){
    ll ans = 0;
    ll N = A.size();
    BIT b(N);
    rep(i, N){
        ans += i - b.sum(A.at(i));
        b.add(A.at(i), 1);
    }
    return ans;
}
//#define _GLIBCXX_DEBUG
#define mint998 modint998244353
#define mint107 modint1000000007
//約数列挙
vector<long long> div(long long n) {
    vector<long long> ret;
    set<ll> re;
    ll N = sqrt(n) + 1;
    for (long long i = 1; i <= N; i++) {
        if (n % i == 0) {
            re.insert(n / i);
            re.insert(i);
        }
    }
    for(auto value :re){
        ret.push_back(value);
    }
    return ret;
}
ll digit_sum(ll X){
    ll ans = 0;
    while(X > 0){
        ans += X%10;
        X/=10;
    }
    return ans;
}
void xypress(vl &A){
    vl B = A;
    sort(all(B));
    B.erase(unique(B.begin(), B.end()), B.end());
    vector<ll> res(A.size());
    for (int i = 0; i < A.size(); ++i) {
        res[i] = lower_bound(B.begin(), B.end(), A[i]) - B.begin();
    }
    A = res;
}
//素数列挙
std::vector<ll> prime( const ll N )
{
    std::vector<bool> is_prime( N + 1 );
    for( ll i = 0; i <= N; i++ )
    {
        is_prime[ i ] = true;
    }
    std::vector<ll> P;
    for( ll i = 2; i <= N; i++ )
    {
        if( is_prime[ i ] )
        {
            for( ll j = 2 * i; j <= N; j += i )
            {
                is_prime[ j ] = false;
            }
            P.push_back( i );
        }
    }
    return P;
}
//mod m での逆元
long long modinv(long long a, long long m) {
    long long b = m, u = 1, v = 0;
    while (b) {
        long long t = a / b;
        a -= t * b; swap(a, b);
        u -= t * v; swap(u, v);
    }
    u %= m;
    if (u < 0) u += m;
    return u;
}
//mod 998244353での割り算
ll inve(ll a, ll b){
    a %= mod;
    return (a * modinv(b, mod) % mod);
}
vl vecsum(vl x){
    vl s = {0};
    rep(i, x.size()){
        s.push_back(s.back() + x.at(i));
    }
    return s;
}

const int N_MAX = 1010101;
ll spf[N_MAX];  // smallest prime factors
void prepare_factorize() {
  rep(i, N_MAX) spf[i] = i;
  for (int p = 2; p * p <= N_MAX; p++) {
    for (int i = p; i < N_MAX; i += p) {
      if (spf[i] == i) spf[i] = p;
    }
  }
}
// 素因数分解
// その素因数が何個あるかのmapを返す
map<ll, ll> allprime(ll n) {
  map<ll, ll> c;
  while (n != 1) {
    ll p = spf[n];
    while (n % p == 0) {
      n /= p;
      c[p]++;
    }
  }
  return c;
}///////////////////////////////////

vector<ll> primes(ll n){
    set<ll> c;
    for(ll i = 2;i * i <= n;i++){
        if(n % i == 0)c.insert(i);
        while(n % i == 0){
            n /= i;
        }
    }
    if(n != 1){
        c.insert(n);
    }
    vl d;
    for(auto a : c){
        d.push_back(a);
    }
    return d;
}


vector<ll> SA_IS(vector<ll> str, ll var) {
    if(str.size() == 1) {
        vector<ll> ret(1,0);
        return ret;
    }
    str.push_back(0);
    ll si = str.size();
    vector<ll> st(var, 0), en(var, 0);
    vector<ll> SL(si, 0); //s..0, l..1
    vector<ll> SA(si, -1);
    vector<ll> LMS;
    vector<ll> is_LMS(si, -1);
    rep(i,str.size()) en[str[i]]++;
    for(ll i = 1; i < var; i++) en[i] += en[i-1];
    for(ll i = 1; i < var; i++) st[i] = en[i-1];
    SL[str.size()-1] = 0;
    for(ll i = str.size()-2; i >= 0; i--) {
        if(str[i] == str[i+1]) {
            SL[i] = SL[i+1];
            continue;
        }
        if(str[i] > str[i+1]) SL[i] = 1;
        else SL[i] = 0;
    }
    for(ll i = 1; i < str.size(); i++) {
        if(SL[i] == 0 && SL[i-1] == 1) {
            SA[--en[str[i]]] = i;
            LMS.push_back(i);
            is_LMS[i] = 1;
        }
    }
    rep(i,var-1) en[i] = st[i+1];
    en[var-1] = str.size();
    
    rep(i,str.size()) if(SA[i] > 0 && SL[SA[i]-1] == 1) { SA[st[str[SA[i]-1]]++] = SA[i]-1; }
    st[0] = 0;
    for(ll i = 1; i < var; i++) st[i] = en[i-1];
    
    for(ll i = 1; i < str.size(); i++) if(SA[i] != -1 && SL[SA[i]] == 0) { SA[i] = -1; }
    
    for(ll i = str.size()-1; i >= 1; i--) if(SA[i] > 0 && SL[SA[i]-1] == 0) { SA[--en[str[SA[i]-1]]] = SA[i]-1; }
    rep(i,var-1) en[i] = st[i+1];
    en[var-1] = str.size();
    
    ll counter = 0;
    vector<ll> pre_sa, new_sa;
    rep(i,SA.size()) if(is_LMS[SA[i]] != -1) {
        is_LMS[SA[i]] = ++counter; 
        
        new_sa.clear();
        for(ll j = SA[i]; j < SA.size(); j++) {
            new_sa.push_back(str[j]);
            if(j != SA[i] && is_LMS[j] != -1) {
                break;
            }
        }
        if(pre_sa == new_sa) {
            is_LMS[SA[i]] = --counter;
        }
        pre_sa = new_sa;
    }
    
    vector<ll> new_str;
    vector<ll> rev((ll)LMS.size()+1, 0);
    counter = 0;
    rep(i,is_LMS.size()) {
        if(is_LMS[i] != -1) {
            new_str.push_back(is_LMS[i]);
            rev[counter++] = i;
        }
    }
    vector<ll> rec = SA_IS(new_str, new_str.size()+1);
    
    rep(i,SA.size()) SA[i] = -1;
    
    for(ll i = rec.size()-1; i >= 0; i--) { SA[--en[str[rev[rec[i]]]]] = rev[rec[i]]; }
    rep(i,var-1) en[i] = st[i+1];
    en[var-1] = str.size();
    
    rep(i,str.size()) if(SA[i] > 0 && SL[SA[i]-1] == 1) { SA[st[str[SA[i]-1]]++] = SA[i]-1; }
    
    for(ll i = 1; i < str.size(); i++) if(SA[i] != -1 && SL[SA[i]] == 0) { SA[i] = -1; }
    
    for(ll i = str.size()-1; i >= 1; i--) if(SA[i] > 0 && SL[SA[i]-1] == 0) { SA[--en[str[SA[i]-1]]] = SA[i]-1; }
    
    SA.erase(SA.begin());
    return SA;
}
int Judge(point &a, point &b, point &c, point &d) {
    double s, t;
    s = (a.x - b.x) * (c.y - a.y) - (a.y - b.y) * (c.x - a.x);
    t = (a.x - b.x) * (d.y - a.y) - (a.y - b.y) * (d.x - a.x);
    if (s * t > 0)
        return false;

    s = (c.x - d.x) * (a.y - c.y) - (c.y - d.y) * (a.x - c.x);
    t = (c.x - d.x) * (b.y - c.y) - (c.y - d.y) * (b.x - c.x);
    if (s * t > 0)
        return false;
    return true;
}
int Judgel(pointl &a, pointl &b, pointl &c, pointl &d) {
    ll s, t;
    s = (a.x - b.x) * (c.y - a.y) - (a.y - b.y) * (c.x - a.x);
    t = (a.x - b.x) * (d.y - a.y) - (a.y - b.y) * (d.x - a.x);
    if (s * t > 0)
        return false;
    s = (c.x - d.x) * (a.y - c.y) - (c.y - d.y) * (a.x - c.x);
    t = (c.x - d.x) * (b.y - c.y) - (c.y - d.y) * (b.x - c.x);
    if (s * t > 0)
        return false;
    return true;
}
double kyori(point &a, point &b){
    double x = abs(a.x - b.x), y = abs(a.y - b.y);
    return sqrt(x * x + y * y);
}
double eps = 1;
struct Edge {
    ll to;
};
using Graph = vector<vector<Edge>>;
vector<ll> topo_sort(const Graph &G) {  // bfs
    vector<ll> ans;
    ll n = (ll)G.size();
    vector<ll> ind(n);            // ind[i]: 頂点iに入る辺の数(次数)
    for (ll i = 0; i < n; i++) {  // 次数を数えておく
        for (auto e : G[i]) {
            ind[e.to]++;
        }
    }
    queue<ll> que;
    for (ll i = 0; i < n; i++) {  // 次数が0の点をキューに入れる
        if (ind[i] == 0) {
            que.push(i);
            
        }
    }
    while (!que.empty()) {  // 幅優先探索
        ll now = que.front();
        ans.push_back(now);
        que.pop();
        for (auto e : G[now]) {
            ind[e.to]--;
            if (ind[e.to] == 0) {
                que.push(e.to);
            }
        }
    }
    return ans;
}
struct LCA {
    vector<vector<int>> parent;  // parent[k][u]:= u の 2^k 先の親
    vector<int> dist;            // root からの距離
    LCA(const Graph &G, int root = 0) { init(G, root); }
    // 初期化
    void init(const Graph &G, int root = 0) {
        int V = G.size();
        int K = 1;
        while ((1 << K) < V) K++;
        parent.assign(K, vector<int>(V, -1));
        dist.assign(V, -1);
        dfs(G, root, -1, 0);
        for (int k = 0; k + 1 < K; k++) {
            for (int v = 0; v < V; v++) {
                if (parent[k][v] < 0) {
                    parent[k + 1][v] = -1;
                } else {
                    parent[k + 1][v] = parent[k][parent[k][v]];
                }
            }
        }
    }
    // 根からの距離と1つ先の頂点を求める
    void dfs(const Graph &G, int v, int p, int d) {
        parent[0][v] = p;
        dist[v] = d;
        for (auto e : G[v]) {
            if (e.to != p) dfs(G, e.to, v, d + 1);
        }
    }
    int query(int u, int v) {
        if (dist[u] < dist[v]) swap(u, v);  // u の方が深いとする
        int K = parent.size();
        // LCA までの距離を同じにする
        for (int k = 0; k < K; k++) {
            if ((dist[u] - dist[v]) >> k & 1) {
                u = parent[k][u];
            }
        }
        // 二分探索で LCA を求める
        if (u == v) return u;
        for (int k = K - 1; k >= 0; k--) {
            if (parent[k][u] != parent[k][v]) {
                u = parent[k][u];
                v = parent[k][v];
            }
        }
        return parent[0][u];
    }
    int get_dist(int u, int v) { return dist[u] + dist[v] - 2 * dist[query(u, v)]; }
    bool is_on_path(int u, int v, int a) { return get_dist(u, a) + get_dist(a, v) == get_dist(u, v); }
};
struct matrix{
    ll h, w;
    vvl X;
    matrix(ll H, ll W) : h(H), w(W){
        init();
    }
    void init(){
        X.assign(h, vl(w, 0));
    }
    void set(ll H, ll W, ll c){
        X.at(H).at(W) = c;
    }
    ll get(ll H, ll W){
        return X.at(H).at(W);
    }
};
struct rollinghash{
    __int128_t m = (1LL << 61) - 1;
    __int128_t base;
    string S;
    int N;
    vl h, sh, pw;
    rollinghash(string x) : S(x), N((int)x.size()){
        base = rand() % (m - 2) + 2;
        st();
    }
    void st(){
        h.assign(N + 1, 0);
        sh.assign(N + 1, 0);
        pw.assign(N + 1, 1);
        for(int i = 0;i < N;i++){
            pw.at(i + 1) = (__int128_t)pw.at(i) * base % m;
        }
        for(int i = 0;i < N;i++){
            h.at(i + 1) = ((__int128_t)h.at(i) * base + (__int128_t)S.at(i)) % m;
            
        }
        for(int i = N - 1;i >= 0;i--){
            sh.at(i) = ((__int128_t)sh.at(i + 1) * base + (__int128_t)S.at(i)) % m;
        }
    }
    ll hash(int l, int r){
        if(l == r){
            return 0;
        }
        else if(l < r){
            return (h.at(r) - (__int128_t)h.at(l) * pw.at(r - l) % m + m) % m;
        }
        else{
            return (sh.at(r) - (__int128_t)sh.at(l) * pw.at(l - r) % m + m) % m;
        }
    }
    ll range_hash(vector<pair<int, int>> p){
        ll now = 0, ret = 0;
        reverse(all(p));
        for(int i = 0;i < p.size();i++){
            ret += (__int128_t)hash(p.at(i).fi, p.at(i).se) * pw.at(now) % m;
            ret %= m;
            now += abs(p.at(i).fi - p.at(i).se);
        }
        return ret;
    }
    ll range_hash(vector<pair<ll, ll>> p){
        ll now = 0, ret = 0;
        reverse(all(p));
        for(int i = 0;i < p.size();i++){
            ret += (__int128_t)hash(p.at(i).fi, p.at(i).se) * pw.at(now) % m;
            ret %= m;
            now += abs(p.at(i).fi - p.at(i).se);
        }
        return ret;
    }
};
class CentroidDecomposition
{
public:
    int V;
    vector<vector<ll> > G;
    vector<bool> used;
    //sz:重心分解後の最大部分木に含まれる頂点の数(自分を含める)
    //par:重心分解後の親の頂点
    vector<ll> sz, par;
    //部分木のサイズを計算
    void calcSize(ll u,ll p){
        sz[u] = 1;
        for(ll v : G[u]){
            if(!used[v] && v != p){
                calcSize(v,u);
                sz[u] += sz[v];
            }
        }
    }
    void cdBuild(ll u,ll p){
        calcSize(u,-1);
        ll tot = sz[u];
        bool ok = false;
        ll pp = -1;
        //いま見ている部分木での重心を見つける
        while(!ok){
            ok = true;
            for(ll v : G[u]){
                if(!used[v] && v != pp && 2*sz[v] > tot){
                    pp = u, u = v, ok = false;
                    break;
                }
            }
        }
        par[u] = p;
        //何らかの操作
        used[u] = true;
        //深さ優先でたどる
        for(ll v : G[u]){
            if(!used[v]){
                cdBuild(v,u);
            }
        }
    }
    CentroidDecomposition(ll node_size) : V(node_size), G(V), used(V, false)
                                                , sz(V, 0), par(V, -1){}
    void add_edge(ll u,ll v){
        G[u].push_back(v), G[v].push_back(u);
    }
    void build(){
        cdBuild(0,-1);
    }
};

template <typename T, typename S>
istream &operator>>(istream &a, pair<T, S> &b){
    a >> b.fi >> b.se;
    return a;
}
template <typename T, typename S>
ostream &operator<<(ostream &a, pair<T, S> &b){
    a << b.fi << ' ' << b.se;
    return a;
}
template <typename T>
istream &operator>>(istream &a, vector<T> &b){
    rep(i, b.size()){
        a >> b.at(i);
    }
    return a;
}
template <typename T>
ostream &operator<<(ostream &a, vector<T> &b){
    rep(i, b.size()){
        a << b.at(i) << " ";
    }
    return a;
}
template <typename T>
ostream &operator<<(ostream &a, vector<vector<T>> &b){
    rep(i, b.size()){
        a << b.at(i);
        if(i != b.size() - 1){
            a<<endl;
        }
    }
    return a;
}
template<typename T>
istream &operator>>(istream &a, set<T> &b){
    T tmp;
    a >> tmp;
    b.insert(tmp);
    return a;
}
void scan(){}
template <class T, class... S>

void scan(T &head, S &... plus){
    cin >> head;
    scan(plus...);
}
void out(){}

template <class T, class... S>

void out(const T &head, const S &... plus){
    cout << head << endl;
    out(plus...);
}

//行列の乗算
vvl matrix_mult(vvl X, vvl Y) {
	  vvl Z(X.size(), vl(Y[0].size()));
	  rep(i, X.size()) {
		rep(k, Y.size()) {
			  rep(j, Y[0].size()) {
				Z[i][j] = (Z[i][j] + X[i][k] * Y[k][j]) % mod;
			  }
		}
	  }
	  return Z;
}

//A^nの計算
vvl matrix_pow(vvl A, ll n) {
	  vvl B(A.size(), vl(A[0].size()));
	  //単位行列でBを初期化
	  rep(i, B.size()) {
		B[i][i] = 1;
	  }

	  while (n>0) {
		if (n & 1) { B = matrix_mult(B, A); }
		A = matrix_mult(A, A);
		n = n >> 1;
	  }
	  return B;
}
template< typename T >
struct FormalPowerSeries : vector< T > {
    using vector< T >::vector;
    using P = FormalPowerSeries;

    P pre(int deg) const {
    return P(begin(*this), begin(*this) + min((int) this->size(), deg));
    }

    P rev(int deg = -1) const {
    P ret(*this);
    if(deg != -1) ret.resize(deg, T(0));
    reverse(begin(ret), end(ret));
    return ret;
    }

    void shrink() {
    while(this->size() && this->back() == T(0)) this->pop_back();
    }

    P operator+(const P &r) const { return P(*this) += r; }

    P operator+(const T &v) const { return P(*this) += v; }

    P operator-(const P &r) const { return P(*this) -= r; }

    P operator-(const T &v) const { return P(*this) -= v; }

    P operator*(const P &r) const { return P(*this) *= r; }

    P operator*(const T &v) const { return P(*this) *= v; }

    P operator/(const P &r) const { return P(*this) /= r; }

    P operator%(const P &r) const { return P(*this) %= r; }

    P &operator+=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < r.size(); i++) (*this)[i] += r[i];
    return *this;
    }

    P &operator-=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
    return *this;
    }

    
    P &operator*=(const P &r) {
    if(this->empty() || r.empty()) {
        this->clear();
        return *this;
    }
    auto ret = convolution(*this, r);
    return *this = {begin(ret), end(ret)};
    }

    P &operator/=(const P &r) {
    if(this->size() < r.size()) {
        this->clear();
        return *this;
    }
    int n = this->size() - r.size() + 1;
    return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
    }

    P &operator%=(const P &r) {
    return *this -= *this / r * r;
    }

    // https://judge.yosupo.jp/problem/division_of_polynomials
    pair< P, P > div_mod(const P &r) {
    P q = *this / r;
    return make_pair(q, *this - q * r);
    }

    P operator-() const {
    P ret(this->size());
    for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
    return ret;
    }

    P &operator+=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
    }

    P &operator-=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
    }

    P &operator*=(const T &v) {
    for(int i = 0; i < this->size(); i++) (*this)[i] *= v;
    return *this;
    }

    P dot(P r) const {
    P ret(min(this->size(), r.size()));
    for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
    }

    P operator>>(int sz) const {
    if(this->size() <= sz) return {};
    P ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
    }

    P operator<<(int sz) const {
    P ret(*this);
    ret.insert(ret.begin(), sz, T(0));
    return ret;
    }

    T operator()(T x) const {
    T r = 0, w = 1;
    for(auto &v : *this) {
        r += w * v;
        w *= x;
    }
    return r;
    }

    P diff() const {
    const int n = (int) this->size();
    P ret(max(0, n - 1));
    for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
    return ret;
    }

    P integral() const {
    const int n = (int) this->size();
    P ret(n + 1);
    ret[0] = T(0);
    for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
    return ret;
    }

    // https://judge.yosupo.jp/problem/inv_of_formal_power_series
    // F(0) must not be 0
    P inv(int deg = -1) const {
    assert(((*this)[0]) != T(0));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    P ret({T(1) / (*this)[0]});
    for(int i = 1; i < deg; i <<= 1) {
        ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
    }
    return ret.pre(deg);
    }

    // https://judge.yosupo.jp/problem/log_of_formal_power_series
    // F(0) must be 1
    P log(int deg = -1) const {
    assert((*this)[0] == T(1));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }

    // https://judge.yosupo.jp/problem/sqrt_of_formal_power_series
    P sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const {
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    if((*this)[0] == T(0)) {
        for(int i = 1; i < n; i++) {
        if((*this)[i] != T(0)) {
            if(i & 1) return {};
            if(deg - i / 2 <= 0) break;
            auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt);
            if(ret.empty()) return {};
            ret = ret << (i / 2);
            if(ret.size() < deg) ret.resize(deg, T(0));
            return ret;
        }
        }
        return P(deg, 0);
    }
    auto sqr = T(get_sqrt((*this)[0]));
    if(sqr * sqr != (*this)[0]) return {};
    P ret{sqr};
    T inv2 = T(1) / T(2);
    for(int i = 1; i < deg; i <<= 1) {
        ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
    }
    return ret.pre(deg);
    }

    P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const {
    return sqrt(deg, get_sqrt);
    }

    // https://judge.yosupo.jp/problem/exp_of_formal_power_series
    // F(0) must be 0
    P exp(int deg = -1) const {
    if(deg == -1) deg = this->size();
    assert((*this)[0] == T(0));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    P ret({T(1)});
    for(int i = 1; i < deg; i <<= 1) {
        ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
    }
    return ret.pre(deg);
    }

    // https://judge.yosupo.jp/problem/pow_of_formal_power_series
    P pow(int64_t k, int deg = -1) const {
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    if(k == 0) {
        P ret(deg, T(0));
        ret[0] = T(1);
        return ret;
    }  
    for(int i = 0; i < n; i++) {
        if(i * k > deg) return P(deg, T(0));
        if((*this)[i] != T(0)) {
        T rev = T(1) / (*this)[i];
        P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
        ret = (ret << (i * k)).pre(deg);
        if(ret.size() < deg) ret.resize(deg, T(0));
        return ret;
        }
    }
    return *this;
    }

    // https://yukicoder.me/problems/no/215
    P mod_pow(int64_t k, P g) const {
    P modinv = g.rev().inv();
    auto get_div = [&](P base) {
        if(base.size() < g.size()) {
        base.clear();
        return base;
        }
        int n = base.size() - g.size() + 1;
        return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
    };
    P x(*this), ret{1};
    while(k > 0) {
        if(k & 1) {
        ret *= x;
        ret -= get_div(ret) * g;
        ret.shrink();
        }
        x *= x;
        x -= get_div(x) * g;
        x.shrink();
        k >>= 1;
    }
    return ret;
    }

    // https://judge.yosupo.jp/problem/polynomial_taylor_shift
    P taylor_shift(T c) const {
    int n = (int) this->size();
    vector< T > fact(n), rfact(n);
    fact[0] = rfact[0] = T(1);
    for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);
    rfact[n - 1] = T(1) / fact[n - 1];
    for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);
    P p(*this);
    for(int i = 0; i < n; i++) p[i] *= fact[i];
    p = p.rev();
    P bs(n, T(1));
    for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
    p = (p * bs).pre(n);
    p = p.rev();
    for(int i = 0; i < n; i++) p[i] *= rfact[i];
    return p;
    }
};
template< typename Mint >
using FPS = FormalPowerSeries< Mint >;
// Bostan-Mori
// find [x^N] P(x)/Q(x), O(K log K log N)
// deg(Q(x)) = K, deg(P(x)) < K, Q[0] = 1
template <typename mint> mint BostanMori(const FPS<mint> &P, const FPS<mint> &Q, long long N) {
    assert(!P.empty() && !Q.empty());
    if (N == 0) return P[0] / Q[0];
    
    int qdeg = (int)Q.size();
    FPS<mint> P2{P}, minusQ{Q};
    P2.resize(qdeg - 1);
    for (int i = 1; i < (int)Q.size(); i += 2) minusQ[i] = -minusQ[i];
    P2 *= minusQ;
    FPS<mint> Q2 = Q * minusQ;
    FPS<mint> S(qdeg - 1), T(qdeg);
    for (int i = 0; i < (int)S.size(); ++i) {
        S[i] = (N % 2 == 0 ? P2[i * 2] : P2[i * 2 + 1]);
    }
    for (int i = 0; i < (int)T.size(); ++i) {
        T[i] = Q2[i * 2];
    }
    return BostanMori(S, T, N >> 1);
}
// Union-Find, we can undo
struct UnionFind {
    // core member
    vector<int> par;
    stack<pair<int,int>> history;
    
    // constructor
    UnionFind() {}
    UnionFind(int n) : par(n, -1) { }
    void init(int n) { par.assign(n, -1); }
    
    // core methods
    int root(int x) {
        if (par[x] < 0) return x;
        else return root(par[x]);
    }
    
    bool same(int x, int y) {
        return root(x) == root(y);
    }
    
    bool merge(int x, int y) {
        x = root(x), y = root(y);
        history.emplace(x, par[x]);
        history.emplace(y, par[y]);
        if (x == y) return false;
        if (par[x] > par[y]) swap(x, y);  // merge technique
        par[x] += par[y];
        par[y] = x;
        return true;
    }
    
    int size(int x) {
        return -par[root(x)];
    }

    // 1-step undo
    void undo() {
        for (int iter = 0; iter < 2; ++iter) {
            par[history.top().first] = history.top().second;
            history.pop();
        }
    }

    // erase history
    void snapshot() {
        while (!history.empty()) history.pop();
    }

    // all rollback
    void rollback() {
        while (!history.empty()) undo();
    }
    
    // debug
    friend ostream& operator << (ostream &s, UnionFind uf) {
        map<int, vector<int>> groups;
        for (int i = 0; i < uf.par.size(); ++i) {
            int r = uf.root(i);
            groups[r].push_back(i);
        }
        for (const auto &it : groups) {
            s << "group: ";
            for (auto v : it.second) s << v << " ";
            s << endl;
        }
        return s;
    }
};

istream &operator>>(istream &a, mint &b){
    ll tmp;
    a >> tmp;
    b = tmp;
    return a;
}
ostream &operator<<(ostream &a, mint &b){
    a << b.val();
    return a;
}
istream &operator>>(istream &a, mmint &b){
    ll tmp;
    a >> tmp;
    b = tmp;
    return a;
}
ostream &operator<<(ostream &a, mmint &b){
    a << b.val();
    return a;
}
ll op(ll a, ll b){
    return max(a, b);
}
ll e(){
    return 0;
}
ll op2(ll a, ll b){
    return min(a, b);
}
ll e2(){
    return inf;
}
ll mapping(P a, ll b){
    return max(b + a.fi, a.se);
}
P composition(P a, P b){
    return make_pair(b.fi + a.fi, max(a.se, b.se + a.fi));
}
P id(){
    return make_pair(0LL, -inf);
}
clock_t st;
void beg(ll ep, ll mo, bool nc, bool fac){
    st = clock();
    mod = mo;
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(20);
    if(nc)init();//二項係数 階乗(fact[])
    srand((unsigned int)time(NULL));
    if(fac)prepare_factorize();//素因数分解
    rep(i, ep){
        eps /= 10;
    }
}
ll kp = 0;
bool f(ll x){
    if(x > kp){
        return true;
    }
    else{
        return false;
    }
}
std::random_device rd;

std::mt19937 mt(rd());

void nowtime(){
    cout << ((double)(clock()) - (double)(st)) / CLOCKS_PER_SEC << endl;
}
double nowtimed(){
    return ((double)(clock()) - (double)(st)) / CLOCKS_PER_SEC;
}
ll sqr(ll a){
    ll ok = 0, ng = 2000000000;
    while(ng - ok > 1){
        ll mi = (ok + ng) / 2;
        if(mi * mi <= a){
            ok = mi;
        }
        else{
            ng = mi;
        }
    }
    return ok;
}

int main()
{
    beg(14, 998244353, true, true);
    ll N, M;
    cin >> N >> M;
    ll Q;
    cin >> Q;
    vl ng(M, inf);
    ll nex = 0;
    segtree<ll, op, e> seg1(N), seg4(N);//0 st 1 gl
    segtree<ll, op2, e2> seg2(N), seg3(N);//0 gl 1 st
    vp S(M);
    rep(i, M){
        cin >> S[i].fi >> S[i].se;
        S[i].fi--;
        S[i].se--;
    }
    vl pl(N - 1);
    vl st(N - 1);
    rep(i, M){
        while(nex < M){
            bool ok = true;
            ll l = S[nex].fi, r = S[nex].se;
            if(l < r){
                if(seg1.prod(l, r) >= r){
                    ok = false;
                }
                if(seg2.prod(l + 1, r + 1) <= l){
                    ok = false;
                }
                if(pl[l] < 0){
                    ok = false;
                }
                if(pl[r - 1] > 0){
                    ok = false;
                }
                if(abs(l - r) != 1){
                    if(st[l] > 0 || st[r - 1] > 0){
                        ok = false;
                    }
                }
                if(ok){
                    seg1.set(l, r);
                    seg2.set(r, l);
                    pl[l]++;
                    pl[r - 1]--;
                    if(abs(l - r) == 1){
                        st[l]++;
                    }
                }
                else{
                    break;
                }
            }
            else{
                if(seg3.prod(r + 1, l) <= r){
                    ok = false;
                }
                if(seg4.prod(r, l) >= l){
                    ok = false;
                }
                if(pl[l - 1] < 0){
                    ok = false;
                }
                if(pl[r] > 0){
                    ok = false;
                }
                if(abs(l - r) != 1){
                    if(st[r] > 0 || st[l - 1] > 0){
                        ok = false;
                    }
                }
                if(ok){
                    seg3.set(l, r);
                    seg4.set(r, l);
                    pl[l - 1]++;
                    pl[r]--;
                    if(abs(l - r) == 1){
                        st[r]++;
                    }
                }
                else{
                    break;
                }
            }
            nex++;
        }
            ll l = S[i].fi, r = S[i].se;
            if(l < r){
                    seg1.set(l, e());
                    seg2.set(r, e2());
                    pl[l]--;
                    pl[r - 1]++;
                    if(abs(l - r) == 1){
                        st[l]--;
                    }
            }
            else{
                    seg3.set(l, e2());
                    seg4.set(r, e());
                    pl[l - 1]--;
                    pl[r]++;
                    if(abs(l - r) == 1){
                        st[r]--;
                    }
            }
            
            ng[i] = nex;
    }
    rep(i, Q){
        ll l, r;
        cin >> l >> r;
        l--;
        r--;
        if(ng[l] > r){
            cout << "Yes" << endl;
        }
        else{
            cout << "No" << endl;
        }
    }
}



Submission Info

Submission Time
Task D - Roadway
User fact493
Language C++ 23 (gcc 12.2)
Score 0
Code Size 102035 Byte
Status WA
Exec Time 462 ms
Memory 58064 KiB

Compile Error

Main.cpp: In function ‘void xypress(vl&)’:
Main.cpp:2599:23: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
 2599 |     for (int i = 0; i < A.size(); ++i) {
      |                     ~~^~~~~~~~~~
Main.cpp: In function ‘std::vector<long long int> SA_IS(std::vector<long long int>, ll)’:
Main.cpp:2718:21: warning: comparison of integer expressions of different signedness: ‘ll’ {aka ‘long long int’} and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
 2718 |     for(ll i = 1; i < str.size(); i++) {
      |                   ~~^~~~~~~~~~~~
Main.cpp:2732:21: warning: comparison of integer expressions of different signedness: ‘ll’ {aka ‘long long int’} and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
 2732 |     for(ll i = 1; i < str.size(); i++) if(SA[i] != -1 && SL[SA[i]] == 0) { SA[i] = -1; }
      |                   ~~^~~~~~~~~~~~
Main.cpp:2744:29: warning: comparison of integer expressions of different signedness: ‘ll’ {aka ‘long long int’} and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
 2744 |         for(ll j = SA[i]; j < SA.size(); j++) {
      |                           ~~^~~~~~~~~~~
Main.cpp:2775:21: warning: comparison of integer expressions of different signedness: ‘ll’ {aka ‘long long int’} and ‘std::vector<long long int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
 2775 |     for(ll i = 1; i < str.size(); i++) if(SA[i] != -1 && SL[SA[i]] == 0) { SA[i] = -1; }
      |                   ~~^~~~~~~~~~~~
Main.cpp: In member function ‘ll rollinghash::range_hash(std::vector<std::pair<int, int> >)’:
Main.cpp:2952:25: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<std::pair<int, int> >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
 2952 |         for(int i = 0;i < p.size();i++){
      |                       ~~^~~~~~~~~~
Main.cpp: In member function ‘ll rollinghash::range_hash(std::vector<std::pair<long long int, long long int> >)’:
Main.cpp:2962:25: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<std::pair<long long int, long long int> >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
 2962 |         for(int i = 0;i < p.size();i++){
      |                       ~~^~~~~~~~~~
Main.cpp: In function ‘std::ostream& operator<<(std::ostream&, UnionFind)’:
Main.cpp:3468:27: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<int>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
 3468 |         for (int i = 0; i < uf.par.size(); ++i) {
      |                         ~~^~~~~~~~~~~~~~~

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 0 / 900
Status
AC × 2
AC × 15
WA × 16
Set Name Test Cases
Sample 00_sample_00.txt, 00_sample_01.txt
All 00_sample_00.txt, 00_sample_01.txt, 01_test_00.txt, 01_test_01.txt, 01_test_02.txt, 01_test_03.txt, 01_test_04.txt, 01_test_05.txt, 01_test_06.txt, 01_test_07.txt, 01_test_08.txt, 01_test_09.txt, 01_test_10.txt, 01_test_11.txt, 01_test_12.txt, 01_test_13.txt, 01_test_14.txt, 01_test_15.txt, 01_test_16.txt, 01_test_17.txt, 01_test_18.txt, 01_test_19.txt, 01_test_20.txt, 01_test_21.txt, 01_test_22.txt, 01_test_23.txt, 01_test_24.txt, 01_test_25.txt, 01_test_26.txt, 01_test_27.txt, 01_test_28.txt
Case Name Status Exec Time Memory
00_sample_00.txt AC 19 ms 14708 KiB
00_sample_01.txt AC 19 ms 14728 KiB
01_test_00.txt AC 462 ms 57296 KiB
01_test_01.txt WA 385 ms 28396 KiB
01_test_02.txt AC 442 ms 39204 KiB
01_test_03.txt AC 414 ms 39388 KiB
01_test_04.txt WA 391 ms 29156 KiB
01_test_05.txt AC 417 ms 39476 KiB
01_test_06.txt WA 388 ms 29032 KiB
01_test_07.txt WA 377 ms 24140 KiB
01_test_08.txt WA 384 ms 28456 KiB
01_test_09.txt AC 409 ms 38724 KiB
01_test_10.txt WA 330 ms 23948 KiB
01_test_11.txt WA 391 ms 56740 KiB
01_test_12.txt WA 370 ms 39120 KiB
01_test_13.txt WA 312 ms 19844 KiB
01_test_14.txt WA 350 ms 37536 KiB
01_test_15.txt WA 359 ms 39388 KiB
01_test_16.txt WA 360 ms 38344 KiB
01_test_17.txt WA 358 ms 38152 KiB
01_test_18.txt WA 376 ms 57288 KiB
01_test_19.txt WA 361 ms 39120 KiB
01_test_20.txt AC 216 ms 14740 KiB
01_test_21.txt AC 212 ms 14680 KiB
01_test_22.txt AC 215 ms 14708 KiB
01_test_23.txt WA 220 ms 14768 KiB
01_test_24.txt AC 309 ms 19096 KiB
01_test_25.txt AC 320 ms 19176 KiB
01_test_26.txt AC 357 ms 58064 KiB
01_test_27.txt AC 294 ms 56428 KiB
01_test_28.txt AC 327 ms 57336 KiB