Contest Duration: - (local time) (120 minutes) Back to Home
C - Piles of Pebbles /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

これらを用いて，高橋君と青木君がゲームをします． 高橋君から始めて，交互に次の操作を行い，操作を行えなくなった方が負けとなります．

• 山を 1 つ以上選び，選んだそれぞれの山から，高橋君の操作の場合は X 個ずつ，青木君の操作の場合は Y 個ずつ小石を取り除く． ただし，小石の個数が足りない山を選ぶことはできない．

### 制約

• 1 \leq N \leq 2\times 10^5
• 1 \leq X, Y \leq 10^9
• 1 \leq A_i \leq 10^9

### 入力

N X Y
A_1 A_2 \cdots A_N


### 出力

このゲームに勝つのが高橋君の場合 First を，青木君の場合 Second を出力せよ．

### 入力例 1

2 1 1
3 3


### 出力例 1

First


• 高橋君が両方の山から石を 1 つ取り除く．
• 青木君が 1 番目の山から石を 1 つ取り除く．
• 高橋君が 1 番目の山から石を 1 つ取り除く．
• 青木君が 2 番目の山から石を 1 つ取り除く．
• 高橋君が 2 番目の山から石を 1 つ取り除く．

### 入力例 2

2 1 2
3 3


### 出力例 2

Second


Score : 600 points

### Problem Statement

There are N piles of pebbles. Initially, the i-th pile has A_i pebbles.

Takahashi and Aoki will play a game using these piles. They will alternately perform the following operation, with Takahashi going first, and the one who becomes unable to do so loses the game.

• Choose one or more piles, and remove the following number of pebbles from each chosen pile: X pebbles if this operation is performed by Takahashi, and Y pebbles if performed by Aoki. Here, a pile with an insufficient number of pebbles cannot be chosen.

Determine the winner of the game if both players play optimally.

### Constraints

• 1 \leq N \leq 2\times 10^5
• 1 \leq X, Y \leq 10^9
• 1 \leq A_i \leq 10^9

### Input

Input is given from Standard Input in the following format:

N X Y
A_1 A_2 \cdots A_N


### Output

If it is Takahashi who will win the game, print First; if it is Aoki, print Second.

### Sample Input 1

2 1 1
3 3


### Sample Output 1

First


Here is one possible progression of the game.

• Takahashi removes 1 pebble from both piles.
• Aoki removes 1 pebble from the 1-st pile.
• Takahashi removes 1 pebble from the 1-st pile.
• Aoki removes 1 pebble from the 2-nd pile.
• Takahashi removes 1 pebble from the 2-nd pile.

No matter how Aoki plays, Takahashi can always win, so the answer is First.

### Sample Input 2

2 1 2
3 3


### Sample Output 2

Second