Contest Duration: - (local time) (120 minutes) Back to Home
A - Simple Math 2 /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

\lfloor x \rfloor について \lfloor x \rfloor は、 x を超えない最大の整数を表します。例としては次のようになります。
• \lfloor 2.5 \rfloor = 2
• \lfloor 3 \rfloor = 3
• \lfloor 9.9999999 \rfloor = 9
• \lfloor \frac{100}{3} \rfloor = \lfloor 33.33... \rfloor = 33

### 制約

• 1 \leq N \leq 10^{18}
• 1 \leq M \leq 10000

### 入力

N M


### 入力例 1

1 2


### 出力例 1

1


\lfloor \frac{10^1}{2} \rfloor = 5 なので、52 で割った余りの 1 を出力します。

### 入力例 2

2 7


### 出力例 2

0


### 入力例 3

1000000000000000000 9997


### 出力例 3

9015


Score : 300 points

### Problem Statement

Given positive integers N and M, find the remainder when \lfloor \frac{10^N}{M} \rfloor is divided by M.

What is \lfloor x \rfloor? \lfloor x \rfloor denotes the greatest integer not exceeding x. For example:
• \lfloor 2.5 \rfloor = 2
• \lfloor 3 \rfloor = 3
• \lfloor 9.9999999 \rfloor = 9
• \lfloor \frac{100}{3} \rfloor = \lfloor 33.33... \rfloor = 33

### Constraints

• 1 \leq N \leq 10^{18}
• 1 \leq M \leq 10000

### Input

Input is given from Standard Input in the following format:

N M


### Sample Input 1

1 2


### Sample Output 1

1


We have \lfloor \frac{10^1}{2} \rfloor = 5, so we should print the remainder when 5 is divided by 2, that is, 1.

### Sample Input 2

2 7


### Sample Output 2

0


### Sample Input 3

1000000000000000000 9997


### Sample Output 3

9015