C - Linear Approximation Editorial /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 300

問題文

すぬけ君は、長さ N の整数列 A を持っています。

すぬけ君は、整数 b を自由に選びます。 この時、A_ib+i が離れているとすぬけ君は悲しいです。 より具体的には、すぬけ君の悲しさの値は、次の式で計算されます。 なおここで、abs(x)x の絶対値を返す関数です。

  • abs(A_1 - (b+1)) + abs(A_2 - (b+2)) + ... + abs(A_N - (b+N))

すぬけ君の悲しさの値の最小値を求めてください。

制約

  • 1 \leq N \leq 2 \times 10^5
  • 1 \leq A_i \leq 10^9
  • 入力はすべて整数である。

入力

入力は以下の形式で標準入力から与えられる。

N
A_1 A_2 ... A_N

出力

すぬけ君の悲しさの値の最小値を出力せよ。


入力例 1

5
2 2 3 5 5

出力例 1

2

b=0 とすれば、すぬけ君の悲しさの値は、abs(2-(0+1))+abs(2-(0+2))+abs(3-(0+3))+abs(5-(0+4))+abs(5-(0+5))=2 となります。 b をどのように選んでも、すぬけ君の悲しさの値を 2 未満にすることは出来ないので、答えは 2 になります。


入力例 2

9
1 2 3 4 5 6 7 8 9

出力例 2

0

入力例 3

6
6 5 4 3 2 1

出力例 3

18

入力例 4

7
1 1 1 1 2 3 4

出力例 4

6

Score : 300 points

Problem Statement

Snuke has an integer sequence A of length N.

He will freely choose an integer b. Here, he will get sad if A_i and b+i are far from each other. More specifically, the sadness of Snuke is calculated as follows:

  • abs(A_1 - (b+1)) + abs(A_2 - (b+2)) + ... + abs(A_N - (b+N))

Here, abs(x) is a function that returns the absolute value of x.

Find the minimum possible sadness of Snuke.

Constraints

  • 1 \leq N \leq 2 \times 10^5
  • 1 \leq A_i \leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
A_1 A_2 ... A_N

Output

Print the minimum possible sadness of Snuke.


Sample Input 1

5
2 2 3 5 5

Sample Output 1

2

If we choose b=0, the sadness of Snuke would be abs(2-(0+1))+abs(2-(0+2))+abs(3-(0+3))+abs(5-(0+4))+abs(5-(0+5))=2. Any choice of b does not make the sadness of Snuke less than 2, so the answer is 2.


Sample Input 2

9
1 2 3 4 5 6 7 8 9

Sample Output 2

0

Sample Input 3

6
6 5 4 3 2 1

Sample Output 3

18

Sample Input 4

7
1 1 1 1 2 3 4

Sample Output 4

6