B - 123 Triangle /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 700

問題文

各要素が 123 である長さ N の数字列 a_1a_2\ldots a_N が与えられます。 x_{i,j} を次のように定義します。

  • x_{1,j} := a_j \quad (1 \leq j \leq N)
  • x_{i,j} := | x_{i-1,j} - x_{i-1,j+1} | \quad (2 \leq i \leq N かつ 1 \leq j \leq N+1-i)

x_{N,1} を求めてください。

制約

  • 2 ≦ N ≦ 10^6
  • a_i = 1,2,3 (1 \leq i \leq N)

入力

入力は以下の形式で標準入力から与えられる。

N
a_1a_2\ldotsa_N

出力

x_{N,1} を出力せよ。


入力例 1

4
1231

出力例 1

1

x_{1,1},x_{1,2},x_{1,3},x_{1,4} はそれぞれ、1,2,3,1 です。

x_{2,1},x_{2,2},x_{2,3} はそれぞれ、|1-2| = 1,|2-3| = 1,|3-1| = 2 です。

x_{3,1},x_{3,2} はそれぞれ、|1-1| = 0,|1-2| = 1 です。

最後に、 x_{4,1} = |0-1| = 1 なので、答えは 1 です。


入力例 2

10
2311312312

出力例 2

0

Score : 700 points

Problem Statement

Given is a sequence of N digits a_1a_2\ldots a_N, where each element is 1, 2, or 3. Let x_{i,j} defined as follows:

  • x_{1,j} := a_j \quad (1 \leq j \leq N)
  • x_{i,j} := | x_{i-1,j} - x_{i-1,j+1} | \quad (2 \leq i \leq N and 1 \leq j \leq N+1-i)

Find x_{N,1}.

Constraints

  • 2 \leq N \leq 10^6
  • a_i = 1,2,3 (1 \leq i \leq N)

Input

Input is given from Standard Input in the following format:

N
a_1a_2\ldotsa_N

Output

Print x_{N,1}.


Sample Input 1

4
1231

Sample Output 1

1

x_{1,1},x_{1,2},x_{1,3},x_{1,4} are respectively 1,2,3,1.

x_{2,1},x_{2,2},x_{2,3} are respectively |1-2| = 1,|2-3| = 1,|3-1| = 2.

x_{3,1},x_{3,2} are respectively |1-1| = 0,|1-2| = 1.

Finally, x_{4,1} = |0-1| = 1, so the answer is 1.


Sample Input 2

10
2311312312

Sample Output 2

0