

Time Limit: 3 sec / Memory Limit: 1024 MB
配点 : 1600 点
問題文
長さ 2N の数列 A_1, A_2, ..., A_{2N} があります. 各 A_i は -1 か,あるいは 1 以上 2N 以下の整数です. -1 以外のどの整数も,{A_i} の中には 1 回までしか現れません.
すぬけ君は,A_i = -1 であるような i それぞれに対して,A_i を 1 以上 2N の整数で置き換えて,{A_i} が 1, 2, ..., 2N の並び替えになるようにします. そして,長さ N の数列 B_1, B_2, ..., B_N を,B_i = min(A_{2i-1}, A_{2i}) として求めます.
数列 B_1, B_2, ..., B_N として考えられる異なるものの個数を 10^9 + 7 で割ったあまりを求めてください.
制約
- 1 \leq N \leq 300
- A_i = -1 あるいは 1 \leq A_i \leq 2N
- A_i \neq -1, A_j \neq -1 ならば A_i \neq A_j (i \neq j)
入力
入力は以下の形式で標準入力から与えられる.
N A_1 A_2 ... A_{2N}
出力
数列 B_1, B_2, ..., B_N として考えられる異なるものの個数を 10^9 + 7 で割ったあまりを出力せよ.
入力例 1
3 1 -1 -1 3 6 -1
出力例 1
5
{A_i} を 1, 2, ..., 2N の並び替えにする方法は 6 通りありますが,そのそれぞれに対して {B_i} は次のようになります:
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 2, 4, 3, 6, 5): (B_1, B_2, B_3) = (1, 3, 5)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 2, 5, 3, 6, 4): (B_1, B_2, B_3) = (1, 3, 4)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 4, 2, 3, 6, 5): (B_1, B_2, B_3) = (1, 2, 5)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 4, 5, 3, 6, 2): (B_1, B_2, B_3) = (1, 3, 2)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 5, 2, 3, 6, 4): (B_1, B_2, B_3) = (1, 2, 4)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 5, 4, 3, 6, 2): (B_1, B_2, B_3) = (1, 3, 2)
よって,異なる B_1, B_2, B_3 は 5 個あります.
入力例 2
4 7 1 8 3 5 2 6 4
出力例 2
1
入力例 3
10 7 -1 -1 -1 -1 -1 -1 6 14 12 13 -1 15 -1 -1 -1 -1 20 -1 -1
出力例 3
9540576
入力例 4
20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 34 -1 -1 -1 -1 31 -1 -1 -1 -1 -1 -1 -1 -1
出力例 4
374984201
Score : 1600 points
Problem Statement
There is a sequence of length 2N: A_1, A_2, ..., A_{2N}. Each A_i is either -1 or an integer between 1 and 2N (inclusive). Any integer other than -1 appears at most once in {A_i}.
For each i such that A_i = -1, Snuke replaces A_i with an integer between 1 and 2N (inclusive), so that {A_i} will be a permutation of 1, 2, ..., 2N. Then, he finds a sequence of length N, B_1, B_2, ..., B_N, as B_i = min(A_{2i-1}, A_{2i}).
Find the number of different sequences that B_1, B_2, ..., B_N can be, modulo 10^9 + 7.
Constraints
- 1 \leq N \leq 300
- A_i = -1 or 1 \leq A_i \leq 2N.
- If A_i \neq -1, A_j \neq -1, then A_i \neq A_j. (i \neq j)
Input
Input is given from Standard Input in the following format:
N A_1 A_2 ... A_{2N}
Output
Print the number of different sequences that B_1, B_2, ..., B_N can be, modulo 10^9 + 7.
Sample Input 1
3 1 -1 -1 3 6 -1
Sample Output 1
5
There are six ways to make {A_i} a permutation of 1, 2, ..., 2N; for each of them, {B_i} would be as follows:
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 2, 4, 3, 6, 5): (B_1, B_2, B_3) = (1, 3, 5)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 2, 5, 3, 6, 4): (B_1, B_2, B_3) = (1, 3, 4)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 4, 2, 3, 6, 5): (B_1, B_2, B_3) = (1, 2, 5)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 4, 5, 3, 6, 2): (B_1, B_2, B_3) = (1, 3, 2)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 5, 2, 3, 6, 4): (B_1, B_2, B_3) = (1, 2, 4)
- (A_1, A_2, A_3, A_4, A_5, A_6) = (1, 5, 4, 3, 6, 2): (B_1, B_2, B_3) = (1, 3, 2)
Thus, there are five different sequences that B_1, B_2, B_3 can be.
Sample Input 2
4 7 1 8 3 5 2 6 4
Sample Output 2
1
Sample Input 3
10 7 -1 -1 -1 -1 -1 -1 6 14 12 13 -1 15 -1 -1 -1 -1 20 -1 -1
Sample Output 3
9540576
Sample Input 4
20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 34 -1 -1 -1 -1 31 -1 -1 -1 -1 -1 -1 -1 -1
Sample Output 4
374984201